Zhanghassing4378
The use of the varied chemical reactivity of precursors to drive the production of a desired nanocrystal architecture has become a common method to grow thick-shell graded alloy quantum dots (QDs) with robust optical properties. Conclusions on their behavior assume the ideal chemical gradation and uniform particle composition. Here, advanced analytical electron microscopy (high-resolution scanning transmission electron microscopy coupled with energy dispersive spectroscopy) is used to confirm the nature and extent of compositional gradation and these data are compared with performance behavior obtained from single-nanocrystal spectroscopy to elucidate structure, chemical-composition, and optical-property correlations. Specifically, the evolution of the chemical structure and single-nanocrystal luminescence was determined for a time-series of graded-alloy "CdZnSSe/ZnS" core/shell QDs prepared in a single-pot reaction. In a separate step, thick (∼6 monolayers) to giant (>14 monolayers) shells of ZnS were added t are required for ideal light emission properties in these green-visible emitting QDs.We investigate the spatial structure of dense square-shoulder fluids. To this end, we derive analytical perturbative solutions of the Ornstein-Zernike equation in the low- and high-temperature limits as expansions around the known hard sphere solutions. We then discuss the suitability of perturbative approaches in relation to the Ornstein-Zernike equation. Our analytical expressions are shown to reproduce reasonably well numerical data in the appropriate regimes.Multi-electron coincidence measurements have been performed at the photon energies for the core-to-valence (1s → π*) and core-to-Rydberg (1s → 3sσ and 3pπ) resonant excitations in N2 in order to investigate the dynamics of multiple Auger-electron emissions from these core-excited states in detail. Peaks due to slow electrons from superexcited atomic fragments are observed in the decay processes by emission of two or three Auger electrons, indicating stepwise (cascade) multiple Auger decays that involve faster dissociations than electronic relaxations. Energy partitions between the emitted electrons enable us to reveal the detailed decay mechanisms for these processes. Branching ratios among the decays by emission of one, two, or three Auger electrons and those between the simultaneous (direct) and stepwise (cascade) processes have been determined for each of the core-excited states. Branching ratios of decay channels resulting in molecular or fragment ions have also been substantiated.The scaling relations for the dispersion coefficients of long-range interactions between the Mu(1s)-Mu(1s, 2s, or 2p) systems and the H(1s)-H(1s, 2s, or 2p) systems are obtained using analytical properties of hydrogenic wavefunctions, which allows us to obtain the dispersion coefficients for Mu(1s)-Mu(1s, 2s, or 2p) systems from the corresponding H(1s)-H(1s, 2s, or 2p) systems. Additionally, the dispersion coefficients of long-range interactions of Mu(1s) with the ground-state H, noble gas atoms He, Ne, Ar, Kr, and Xe, alkali-metal atoms Li, Na, K, and Rb, alkaline-earth atoms Be, Mg, Ca, and Sr, and Cu, Ag, F, and Cl atoms are calculated.The diatomic transition metal selenides, MSe (M = Sc, Y, Ru, Os, Co, Rh, Ir, and Pt), were studied by resonant two-photon ionization spectroscopy near their respective bond dissociation energies. As these molecules exhibit high densities of vibronic states near their dissociation limits, the spectra typically appear quasicontinuously at these energies. Spin-orbit and nonadiabatic couplings among the multitudes of potential curves allow predissociation to occur on a rapid timescale when the molecule is excited to states lying above the ground separated atom limit. This dissociation process occurs so rapidly that the molecules are dissociated before they can be ionized by the absorption of a second photon. This results in an abrupt drop in the ion signal that is assigned as the 0 K bond dissociation energy for the molecule, giving bond dissociation energies of 4.152(3) eV (ScSe), 4.723(3) eV (YSe), 3.482(3) eV (RuSe), 3.613(3) eV (OsSe), 2.971(6) eV (CoSe), 3.039(9) eV (RhSe), 3.591(3) eV (IrSe), and 3.790(31) eV (PtSe). The enthalpies of formation, ΔfH0K° (g), for each diatomic metal selenide were calculated using thermochemical cycles, yielding ΔfH0K° (g) values of 210.9(4.5) kJ mol-1 (ScSe), 203.5(4.5) kJ mol-1 (YSe), 549.2(4.5) kJ mol-1 (RuSe), 675.9(6.5) kJ mol-1 (OsSe), 373.9(2.6) kJ mol-1 (CoSe), 497.4(2.7) kJ mol-1 (RhSe), 557.4(6.5) kJ mol-1 (IrSe), and 433.7(3.6) kJ mol-1 (PtSe). Utilizing a thermochemical cycle, the ionization energy for ScSe is estimated to be about 7.07 eV. The bonding trends of the transition metal selenides are discussed.New flowing afterglow/Langmuir probe investigations of electronic attachment to SF6 are described. Thermal attachment rate constants are found to increase from 1.5 × 10-7 cm3 s-1 at 200 K to 2.3 × 10-7 cm3 s-1 at 300 K. Attachment rate constants over the range of 200-700 K (from the present work and the literature), together with earlier measurements of attachment cross sections, are analyzed with respect to electronic and nuclear contributions. The latter suggest that only a small nuclear barrier (of the order of 20 meV) on the way from SF6 to SF6 - has to be overcome. The analysis shows that not only s-waves but also higher partial waves have to be taken into account. Likewise, finite-size effects of the neutral target contribute in a non-negligible manner.As part of an extensive effort to explore the function of Au/ZnO catalysts in the synthesis of methanol from CO2 and H2, we have systematically investigated the temperature dependent growth, structure formation, and surface intermixing of Zn on the herringbone reconstructed Au(111) surface and the thermal stability of the resulting surfaces by scanning tunneling microscopy (STM) and x-ray photoelectron spectroscopy (XPS). After Zn deposition at low temperatures, at about 105 K (STM) or below (XPS), we observed nucleation and two-dimensional growth of Zn islands mainly at the elbow sites of the Au(111) herringbone reconstruction. This results in local perturbations of the reconstruction pattern of the Au(111) substrate, which can create additional nucleation sites. XPS data indicate that Zn dissolution into deeper layers is kinetically hindered under these conditions, while local exchange with the Au surface layer, in particular at the elbow sites during nucleation, cannot be excluded. Zn deposition at room temperature, in contrast, results in near-surface alloy formation with a strongly distorted pattern of the herringbone reconstruction and condensation of the Zn and exchanged Au adatoms at ascending steps, together with some loss of Zn into deeper layers. Upon annealing, Zn atoms diffuse to lower layers and eventually to the Au bulk, and the surface successively regains its original Au(111) herringbone structure, which is almost reached after 500 K annealing. Compared with previous reports on the growth of other metals on Au(111), Zn shows a rather high tendency for intermixing and near-surface alloy formation.Photocatalysis induced by sunlight is one of the most promising approaches to environmental protection, solar energy conversion, and sustainable production of fuels. The computational modeling of photocatalysis is a rapidly expanding field that requires to adapt and to further develop the available theoretical tools. The coupled transfer of protons and electrons is an important reaction during photocatalysis. In this work, we present the first step of our methodology development in which we apply the existing kinetic theory of such coupled transfer to a model system, namely, methanol photodissociation on the rutile TiO2(110) surface, with the help of high-level first-principles calculations. Moreover, we adapt the Stuchebrukhov-Hammes-Schiffer kinetic theory, where we use the Georgievskii-Stuchebrukhova vibronic coupling to calculate the rate constant of the proton coupled electron transfer reaction for a particular pathway. In particular, we propose a modified expression to calculate the rate constant, which enforces the near-resonance condition for the vibrational wave function during proton tunneling.Single layer graphene was used to determine the electrochemical potential of plasmonic nano-structures for photoelectrochemical energy conversions. From electrochemical Raman measurements of the graphene layer under near-infrared light, illumination has revealed the relationship between the photoenergy conversion ability and the Fermi level of the plasmonic structure. The determination is based on in situ monitoring of G and 2D Raman bands of the graphene layer on plasmonic structures. The correlation plots of G and 2D bands show the dependence on the photoconversion ability. The present electrochemical Raman measurements provide detailed understanding of the plasmon-induced charge transfer process for further developments on the ability.Over the last few years, extraordinary advances in experimental and theoretical tools have allowed us to monitor and control matter at short time and atomic scales with a high degree of precision. An appealing and challenging route toward engineering materials with tailored properties is to find ways to design or selectively manipulate materials, especially at the quantum level. To this end, having a state-of-the-art ab initio computer simulation tool that enables a reliable and accurate simulation of light-induced changes in the physical and chemical properties of complex systems is of utmost importance. The first principles real-space-based Octopus project was born with that idea in mind, i.e., to provide a unique framework that allows us to describe non-equilibrium phenomena in molecular complexes, low dimensional materials, and extended systems by accounting for electronic, ionic, and photon quantum mechanical effects within a generalized time-dependent density functional theory. This article aims to present the new features that have been implemented over the last few years, including technical developments related to performance and massive parallelism. We also describe the major theoretical developments to address ultrafast light-driven processes, such as the new theoretical framework of quantum electrodynamics density-functional formalism for the description of novel light-matter hybrid states. Ertugliflozin solubility dmso Those advances, and others being released soon as part of the Octopus package, will allow the scientific community to simulate and characterize spatial and time-resolved spectroscopies, ultrafast phenomena in molecules and materials, and new emergent states of matter (quantum electrodynamical-materials).Ionizing interactions between charged particles and molecules of biological relevance have attracted considerable interest in the last decade due to its importance in medical radiation therapy. We have previously calculated triply differential cross sections for five biomolecules in collaboration with experimental groups. We used the molecular 3-body distorted wave approximation for these calculations. For ionization of biomolecules, experimentalists are unable to determine the orientation of the molecule at the time of ionization, which means that the calculated cross sections need to be averaged over all molecular orientations. At the time the calculations were performed, it was not numerically feasible for us to perform proper averaging over orientations, so we introduced the orientation averaged molecular orbital approximation to make the calculations possible. We now have the computational capability to properly perform this average, so, here, we present new results with a proper average over orientations and compare with the previous calculations and experiment.