Zhangbird3415
Our aim was to investigate whether SARS-CoV-2 infection raised high risks of late pregnancy complications, and posed health problems in fetuses and neonates. We analyzed the data of COVID-19 pregnant women with COVID-19 during late pregnancy and their neonates. Eleven out of 16 (69%) pregnant women with COVID-19 had ++ or +++ of ketone body in urine. The blood uric acid of pregnant patients was 334 μmol/L (IQR, 269-452). D-dimer and FDP in pregnant patients were 3.32 mg/L (IQR, 2.18-4.21) and 9.6 mg/L (IQR, 5.9-12.4). Results of blood samples collected at birth showed that 16 neonates had leukocytes (15.7 × 109/L (IQR, 13.7-17.2)), neutrophils (11.1 × 109/L (IQR, 9.2-13.2)), CK (401 U/L (IQR, 382-647)), and LDH (445 U/L (IQR, 417-559)). Twenty-four hours after birth, a neonate from COVID-19 woman had fever and positive of SARS-CoV-2 gene. Another woman had strongly positive for SARS-CoV-2 gene (+++) for 4 weeks, and delivered one neonate who had SARS-CoV-2 IgM (46 AU/mL) and IgG (140 AU/mL) on day 1 after birth. Ferrostatin-1 nmr In the third trimester, COVID-19 infection in pregnant patients raised high risks of ketonuria, hypercoagulable state, and hyperfibrinolysis, which may lead to severe complications. COVID-19 increased the inflammatory responses of placenta, and fetuses and neonates had potential organ dysregulation and coagulation disorders. There was a potential intrauterine transmission while pregnant women had high titer of SARS-CoV-2, but it is necessary to detect SARS-CoV-2 in the blood cord, placenta, and amniotic fluid to further confirm intrauterine infection of fetuses.Programmable transcriptional regulation is a powerful tool to study gene functions. Current methods to selectively regulate target genes are mainly based on promoter exchange or on overexpressing transcriptional activators. To expand the discovery toolbox, we designed a dCas9-based RNA-guided synthetic transcription activation system for Aspergillus nidulans that uses enzymatically disabled "dead" Cas9 fused to three consecutive activation domains (VPR-dCas9). The dCas9-encoding gene is under the control of an estrogen-responsive promoter to allow induction timing and to avoid possible negative effects by strong constitutive expression of the highly active VPR domains. Especially in silent genomic regions, facultative heterochromatin and strictly positioned nucleosomes can constitute a relevant obstacle to the transcriptional machinery. To avoid this negative impact and to facilitate optimal positioning of RNA-guided VPR-dCas9 to targeted promoters, we have created a genome-wide nucleosome map from actively gers.The conductive lipid pores occurring in planar bilayer membranes are known to manifest themselves experimentally as current fluctuations. Reliable recording of such fluctuations during phase transitions, as well as in membranes with various additives (for example, SDS), allows one to determine the characteristics of hypothetical hydrophilic pores, namely, their number, sizes, lifetimes, and duration of time intervals between pores. Because, in contrast with electroporation, the emergence of pores in a membrane does not require high voltages, this process is called soft poration. Studying the characteristics of pores under soft poration allows us to estimate the parameters of the Smoluchowski equation and compare them with the corresponding parameters used to describe electroporation. In this work, the experimental characteristics of current fluctuations in the membrane with the addition of SDS to the bulk solution were used to estimate the parameters of the Smoluchowski equation the pore edge tension, the energy of the hydrophobic pore/hydrophilic pore barrier, the coefficient of pore diffusion in the radius space, the initial distribution density of the number of pores, and the attempt rate density of the lipids in a membrane. The obtained estimates are close to the parameter values used in studies of electroporation.We measure the free energy of a model filament, which undergoes deformations and structural transitions, as a function of its extension, in silico. We perform Brownian Dynamics (BD) simulations of pulling experiments at various speeds, following a protocol close to experimental ones. The results from the fluctuation theorems are compared with the estimates from Monte Carlo (MC) simulation, where the rugged free energy landscape is produced by the density of states method. The fluctuation theorems (FT) give accurate estimates of the free energy up to moderate pulling speeds. At higher pulling speeds, the work distributions do not efficiently sample the domain of small work and FT slightly overestimates free energy. In order to comprehend the differences, we analyze the work distributions from the BD simulations in the framework of trajectory thermodynamics and propose the generalized fluctuation theorems that take into account the information (relative entropy) evaluated in the expanded phase space. The measured work - free energy relation is consistent with the results obtained from the generalized fluctuation theorems. We discuss operational methods to improve the estimates at high pulling speed.During production, the supplemental file "Trajectory analysis of 5ns MD simulation of VA-64 and OLM.mpeg", as well as the "RunNo and Serial numbers", for Table III and Table VII respectively, were inadvertently omitted from the published article.We report an approach to fabricate high conductivity graphite sheets based on a heat-and-current treatment of filtrated, exfoliated graphite flakes. This treatment combines heating (~ 900 °C) and in-plane electrical current flow (550 A·cm-2) to improve electrical conductivity through the reduction of crystalline defects. This process was shown to require only a 1-min treatment time, which resulted in a 2.1-fold increase in electrical conductivity (from 1088 ± 72 to 2275 ± 50 S·cm-1). Structural characterization by Raman spectroscopy and X-ray diffraction indicated that the improvement electrical conductivity originated from a 30-fold improvement in the crystallinity (Raman G/D ratio increase from 2.8 to 85.3) with no other observable structural transformations. Significantly, this treatment was found to act uniformly across a macroscopic (10 mm) sheet surface indicating it is on the development of applications, such as electrodes for energy generation and storage and electromagnetic shielding, as well as on the potential for the development of large-scale treatment technologies.
To evaluate the diagnostic potential of PET/MRI with 2-[
F]fluoro-2-deoxy-D-glucose ([
F]FDG) in ovarian cancer.
Participants comprised 103 patients with suspected ovarian cancer underwent pretreatment [
F]FDG PET/MRI, contrast-enhanced CT (ceCT) and pelvic dynamic contrast-enhanced MRI (ceMRI). Diagnostic performance of [
F]FDG PET/MRI and ceMRI for assessing the characterization and the extent of the primary tumor (T stage) and [
F]FDG PET/MRI and ceCT for assessing nodal (N stage) and distant (M stage) metastases was evaluated by two experienced readers. Histopathological and follow-up imaging results were used as the gold standard. The McNemar test was employed for statistical analysis.
Accuracy for the characterization of suspected ovarian cancer was significantly better for [
F]FDG PET/MRI (92.5%) [95% confidence interval (CI) 0.84-0.95] than for ceMRI (80.6%) (95% CI 0.72-0.83) (p < 0.05). Accuracy for T status was 96.4% (95% CI 0.96-0.96) and 92.9% (95% CI 0.93-0.93) for [
F]FDG PET/MRand N staging equivalent to ceMRI and ceCT, suggesting that [18F]FDG PET/MRI might represent a useful diagnostic alternative to conventional imaging modalities in ovarian cancer.Biogenic amines (BAs) are low molecular weight organic bases formed by natural amino acids decarboxylation and trigger an array of toxicological effects in humans and animals. Bacterial amine oxidases enzymes are determined as practical tools to implement the rapid quantification of BAs in foods. Our study set out to obtain a new efficient, amine oxidase enzyme for developing new enzyme-based quantification of histamine. The soils from different sources were screened using histamine as sole carbon and nitrogen sources, and histamine oxidase producing bacteria were selected and identified using specific primers for histamine oxidase (HOD) gene. The HOD gene of six strains, out of 26 isolated histamine-utilizing bacteria, were amplified using our designed primers. The HOD enzyme from Glutamicibacter sp. N1A3101, isolated from nettle soil, was found to be thermostable and showed the highest substrate specificity toward the histamine and with no detected activity in the presence of putrescine, cadaverine, spermine, and spermidine. Its oxidation activity toward tyramine was lower than other HOD reported so far. The isolated enzyme was stable at 60 °C for 30 min and showed pH stability ranging from 6 to 9. Furthermore, we indicated the induction of identified HOD activity in the presence of betahistine as well, with nearly equal efficiency and without the consumption of the substrate.Traditional transparent conducting oxides (TCOs) have been widely used for various optoelectronic applications, but have the trade-off between conductivity and transmittance. Recently, perovskite oxides, with structural and chemical stability, have exhibited excellent physical properties as new TCOs. We focus on SrVO3-based perovskites with a high carrier concentration and BaSnO3-based perovskites with a high mobility for n-type TCOs. In addition, p-type perovskites are discussed, which can serve as potential future options to couple with n-type perovskites to design full perovskite based devices.
Endoscopic balloon dilatation (EBD) is the established treatment for common bile duct (CBD) stones. Although pancreatitis and bleeding have been reported as major complications of EBD, balloon-related complications are rarely reported in EBD.
A 30-year-old woman with suspected CBD stones underwent endoscopic retrograde cholangiopancreatography (ERCP) and EBD. During EBD, the balloon of the EBD catheter suddenly burst at the biliary sphincter. We therefore performed surgical intervention removal of the broken EBD catheter and T-tube drainage. Finally, the patient was discharged without any complications.
We present a case involving a burst balloon of an EBD catheter as a rare complication during EBD, as well as the surgical technique that was used to treat this complication.
We present a case involving a burst balloon of an EBD catheter as a rare complication during EBD, as well as the surgical technique that was used to treat this complication.Laccases are a class of multi-copper oxidases with important industrial values. A thermotolerant laccase produced by a basidiomycete fungal strain Cerrena unicolor CGMCC 5.1011 was studied. With glycerin and peptone as the carbon and nitrogen sources, respectively, a maximal laccase activity of 121.7 U/mL was attained after cultivation in the shaking flask for 15 days. Transcriptomics analysis revealed an expressed laccase gene family of 12 members in C. unicolor strain CGMCC 5.1011, and the gene and cDNA sequences were cloned. A glycosylated laccase was purified from the fermentation broth of Cerrena unicolor CGMCC 5.1011 and corresponded to Lac2 based on MALDI-TOF MS/MS identification. Lac2 was stable at pH 5.0 and above, and was resistant to organic solvents. Lac2 displayed remarkable thermostability, with half-life time of 1.67 h at 70 ºC. Consistently, Lac2 was able to completely decolorize malachite green (MG) at high temperatures, whereas Lac7 from Cerrena sp. HYB07 resulted in accumulation of colored MG transformation intermediates.