Yilmazstarr5887

Z Iurium Wiki

Most of the talks during the conference dealt with sustainable practices for producing or synthesizing biomolecules via microorganisms. Bacteria, fungi as well algae were presented as bio machinery to convert the waste residues into value-added products including bioenergy and other biomolecules. This virtual special issue includes a selection of papers presented at the BIORESTEC conference, which contribute to environmental sustainability and give a strong message on sustainable technologies through developing bioproducts in order to overcome environmental issues.The present study is dedicated to physicochemical characterization, kinetic, thermal degradation behaviors, and online characterization of vapour products through Py-GC-MS and TGA-FTIR. The feasibility study was attained via proximate, ultimate, fibre analysis, and extractive analysis, whereas Vyazovkin (VM), Ozawa-Flynn-Wall (OFW), Kissinger-Akahira-Sunose (KAS), Coats-Redfern (CR), and Distributed Activation Energy Model (DAEM) were employed for kinetics exploration. The feasibility study showed its tremendous ability to be used as pyrolysis feedstock. TGA-FTIR documented the maximum release of CO2 (26.22%), carbonyls (25.04%), and hydrocarbons (15.93%). Further, kinetic investigation of SWG documented an increased trend of activation energy against progressive conversion. The apparent average activation energy from KAS, OFW, DAEM, and VM was found to be 126.03, 137.54, 130.33, 134.26 kJ mol-1, respectively. Also, kinetics reaction mechanisms are exposed to the multi-nature of decomposition of biomass. Furthermore, the Py-GC-MS investigation established increased hydrocarbons (6.49-11.54%) and reduced oxygen-containing products (24.17-17.27%) with an increased temperature.Wheat straw was pretreated using ball milling (BM) promoted by solid particles (NaOH, NaCl, citric acid). NaOH showed the best synergistic interaction effect, due to the breakage of β-1,4-glycosidic bonds among cellulose molecules by the alkali solid particles induced by BM. NaOH-BM pretreatment decreased the straw crystallinity from 46% to 21.4% and its average particle size from 398.3 to 50.6 μm in 1 h. After 4 h milling, the reducing-end concentration of cellulose increased by 3.8 times from 12.5 to 60.2 μM, with glucose yield increased by 2.1 times from 26.6% to 82.4% for 72 h enzymatic hydrolysis at cellulase loading of 15 FPU/g dry substrate. The pretreatment washing liquor was recycled for the re-treatment of partially pretreated biomass at 121 °C for 30 min, resulting in 99.4% glucose yield by enzymatic hydrolysis. BM assisted with alkali particles was an effective approach for improving biomass enzymatic saccharification.The mitigation of greenhouse gas (GHG) emission is one of the major focuses of The Glasgow Climate Pact, a global agreement that is believed to accelerate climate action. Following the energy sector, industrial and agro-wastes are the major contributors to global GHG emission. With the rapid growth in population, affluence, and urbanization, the GHG emission from waste sector is likely to be further aggravated if timely measures are not taken to address this burning issue. Thus, a significant research and development efforts are being made in shifting conventional waste treatment approach to resource recovery from waste, incorporating a circular bioeconomy concept. There have been significant advances in technologies such as anaerobic digestion, composting, pyrolysis, algae farming, and microbial fuel cell for recovering resources from organic wastes. This virtual special issue (VSI), "Bioconversion of Waste-to-Resources (BWR-2021)", contains 25 manuscripts covering various aspects of wastes and residual biomass valorization to high value products, including development of new technologies, optimization of current technologies for more efficient utilization of wastes and residues. The key findings of each manuscript are briefly summarized here, which can serve as a valuable resource for researchers in the field of resource recovery from wastes.Mammals TRAF2 played a dual role in several immune signaling transduction processes. In this study, TRAF2 was cloned from Nile tilapia, Oreochromis niloticus, which named OnTRAF2. The open reading frame was 1797 bp, encoding 598 amino acids. Amino acid alignment and phylogenetic analysis indicated that OnTRAF2 showed relatively low identify with other teleost TRAF2 proteins, with the exception of TRAF2s from Epinephelus coioides. In healthy tilapia, OnTRAF2 was expressed widely in all the examined tissues, which had highest expression level in the brain. After Streptococcus agalactiae infection, the expression level of OnTRAF2 was increased significantly at different times in several organs, implying that OnTRAF2 may be involved in host defense against S. agalactiae infection. The result of subcellular localization showed that OnTRAF2 presented in cytoplasm and nucleus of HEK293T cells. Additionally, overexpression of OnTRAF2 significantly decreased the transcriptional activity of the NF-κB reporter in HEK293T cells, yeast two-hybrid results revealed that OnTRAF2 had no interaction with E3 ubiquitin ligase OnNEDD4. These results indicated that OnTRAF2 played important function during bacterial infection, and negatively mediated the immune signaling transduction in Nile tilapia, while the mechanism need further study.Antimicrobial peptides are immune system molecules existing in different organisms including mollusks, crustaceans and vertebrates. Hepcidins are a group of cysteine rich antimicrobial peptides, which plays an important role in fish response to a variety of pathogens. In this study, we cloned and identified Hepcidin from the Coregonus ussuriensis Berg, and its functions in vivo and in vitro was investigated. Our results showed that, CuHepc contains a 267 bp coding sequence (CDS) region that encodes 88 putative amino acids with a molecular weight of 9.77 kD. Hepcidin transcripts were most abundant in the liver of healthy C. ussuriensis Berg. The synthesized Hepcidin peptide exhibited a wide range of antibacterial activity against Gram-positive and Gram-negative bacteria in vitro, and the results of in vivo bacterial attack assays showed that the CuHepc gene was differentially up-regulated in the six tissues investigated after infection with Aeromonas hydrophila. To analyze the changes in protein levels in C. ussuriensis, we generated Hepc polyclonal antibodies in rabbits and verified that the protein expression was increased after bacterial infection with Western blot assay. MIC assay results showed a geometric mean value of 5.513 μM for CuHepc peptide. In the in vivo experiment, immune-related genes IL-10, NF-κB, TLR3 were up-regulated post-infection CuHepc peptide in liver and intestine. Finally, CuHepc peptide reduced the tissues microbial load compared to infection with Aeromonas hydrophila. The above results indicate that Hepc plays a role in the immune response of C. ussuriensis to exogenous disturbances, indicate that CuHepc might act a candidate for modulation of the innate immune system in C. ussuriensis.The effect of four level of Astragalus polysaccharides (APs) supplementation diets, (CD control diet and three experiment diet (E), EA 100 mg kg-1 APs; EB 200 mg kg-1 APs; EC 300 mg kg-1 APs) on growth, changes in haemato-biochemical parameters and metabolic-digestive enzymes, enhancement of antioxidant activity, innate-adaptive immune response, and cytokine gene expression were studied in catla (Catla catla) against Edwardsiella tarda. The healthy and challenged groups fed the CD displayed no mortality, while fish fed EA or EC revealed 10% mortality, but the mortality was only 5% in diet EB. MK-5108 chemical structure Fish fed diet EB and EC revealed significantly better growth rates and high RBC count during the experimental period. Albumin and globulin levels were significant improved when fish were fed the diet EB and EC from weeks 6-8. The superoxide dismutase (SOD) was significant ameliorated by EB feeding from weeks 4-8. In contrast, serum myeloperoxidase (MPO), catalase (CAT), malondialdehyde (MDA)/lipid peroxidation (LPO), gluiet, the expression of nucleotide binding oligomerization domain-1 (NOD1) was significantly improved on weeks 6 and 8, but NOD2 mRNA expression was only significant enhanced after 8 weeks of diet EB. By feeding healthy catla and E. tarda challenged fish fed diet EB, resulted in significantly increased growth, haemato-biochemical indices, metabolic-digestive enzymes, antioxidant activities, innate-adaptive immune responses, and cytokine gene expression mainly between 6 and 8 weeks.Regulatory factor X 5 (RFX 5) is a member of the RFX family, and it forms the transcription factor complex RFX with RFXANK/B and RFXAP. The RFX complex can activate MHC expression by binding to the MHC promoter. However, the regulate mechanism of RFX in fish species is not been fully elucidated. In this study, we investigated the transcriptional regulation of Epinephelus akaara RFX5 (EaRFX5) on EaMHCI, and its effect on immune pathways. The genomic sequence of EaRFX5 was 35,774 bp and consisted of ten exons and nine introns. The length of EaRFX5 ORF sequence is 2,160 bp, encoding 719 amino acids. By qRT-PCR, EaRFX5 was detected constitutively expressed in twelve selected tissues, showing a wide range of expression. EaRFX5 expression parttern in response to poly (IC), LPS, Zymosan A, SGIV, and NNV challenges showed that EaRFX5 plays a differentiated immunomodulatory role in response to various stimuli in different tissues, and EaRFX5 was most significantly upregulated in the kidney after challenge with SGIV. Subcellular localization assays showed that EaRFX5 is a typical nuclear protein. Based on the in vitro overexpression experiments, EaRFX5 appeared to promote the expression of EaMHCIa gene, interferon signalling pathway and inflammatory cytokine. Luciferase reporter assay showed that the -267 bp to +82 bp region of EaMHCIa promoter was the core region where EaRFX5 modulated. Additionally, point mutations and electrophoretic mobility shift assays indicating M3 is the EaRFX5 binding sites in the EaMHCIa promoter. These results contribute to elucidating the function of EaRFX5 in fish immune response, and provide the first evidence of positive regulation of MHCIa expression by RFX5 in fish.Bacterial biofilms form on inert and living surfaces and display high levels of resistance to antibiotics, making it difficult to eradicate biofilm-related infections. Erdosteine, a thiol-based drug used in the treatment of acute and chronic respiratory diseases, has multiple pharmacodynamic properties (mucolytic, anti-inflammatory, antioxidant), suggesting that it may have potential in controlling biofilm-related infections. This in vitro study aimed to evaluate the effects of erdosteine in combination with different antibiotics against methicillin-susceptible and methicillin-resistant Staphylococcus aureus (MSSA and MRSA) biofilms. Biofilm production/mass and bacterial viability were measured using crystal violet absorbance and resorufin resonance, respectively, in young (6 h) and mature (24 h) biofilms incubated with antibiotics [at concentrations from 0 to 200 times the minimum inhibitory concentration (MIC)] for 24 h in the absence or presence of erdosteine (2, 5 and 10 mg/L). In 6-h MRSA biofilms, vancomycin and linezolid displayed concentration-dependent reductions in biofilm mass and viability, which was enhanced in the presence of increasing concentrations of erdosteine.

Autoři článku: Yilmazstarr5887 (Maurer Pruitt)