Yilmazfisher5200

Z Iurium Wiki

Silicon photonics coherent transceivers have integrated all the necessary optics except the lasers. The laser source has become a major obstacle to further reduce the cost, footprint, power consumption of the coherent transceivers for short-reach optical interconnects. One solution is to utilize remotely delivered local oscillator (LO) from the transmitter, which has the benefits of relaxing the requirements of wavelength stability and laser linewidth and simplifying the digital signal processing (DSP) of carrier/phase recovery. However, a sophisticated adaptive polarization controller (APC) driven by a control loop in the electrical domain with a complicated algorithm is required to dynamically track and compensate for the polarization wandering of the received LO. In this paper, we propose a hybrid single-polarization coherent receiver and Stokes vector receiver (SVR) for polarization-diversity coherent detection without a need of optical polarization control for the remotely delivered LO. With such a scheme, we successfully received a 400-Gb/s dual-polarization constellation-shaped 64-QAM signal over 80-km fibers.We propose a scheme to implement a supersensitive estimation of the coupling strength in a hybrid optomechanical system which consists of a cavity-Bose-Einstein condensate system coupled to an impurity. This method can dramatically improve the estimation precision even when the involved photon number is small. The quantum Fisher information indicates that the Heisenberg scale sensitivity of the coupling rate could be obtained when the photon loss rate is smaller than the corresponding critical value in the input of either coherent state or squeezed state. The critical photon decay rate for the coherent state is larger than that of the squeezed state, and the coherent state input case is more robust against the photon loss than the squeezed state case. We also present the measurement scheme which can saturate the quantum Cramér-Rao bound.A 4 mm-aperture hole-patterned liquid crystal (LC) lens has been fabricated using a LC mixture, which consisted of rutile titanium dioxide (TiO2) nanoparticles (NPs) and nematic LC E7, for the first time. The TiO2 NP dopant improves the addressing and operation voltages of the LC lens significantly because it strengthens the electric field surrounding the TiO2 NP and increases the capacitance of lens cell. Unlike the doping of common colloidal NPs, that of rutile TiO2 NPs increases the phase transition temperature and birefringence of the LC mixture, thereby helping enhance the lens power of LC lens. In comparison with a pure LC lens, the TiO2 NP-doped one has approximately 50% lower operation voltage because of the strengthened electric field around the NPs and has roughly 2.8 times faster response time because of the decreased rotational viscosity of the LC mixture and the increased interaction between the LC molecules by the NP dopants. Notably, the doping of rutile TiO2 NPs improves the operation voltage, tunable focusing capability, and response time of LC lens simultaneously. Meanwhile, this method does not degrade the focusing and lens qualities. The imaging performances of TiO2 NP-doped LC lens at various voltages are demonstrated practically by tunable focusing on three objectives at different positions. These results introduce NP in the application of LC lenses.Volatile organic compounds (VOCs) are one of the major pollutants in the atmospheric and indoor environment. The direct detection of halogen atoms in VOCs via laser induced breakdown spectroscopy (LIBS) is highly challenging work because of the high ionization energy of these halogen elements. In this paper, the LIBS system combined with a self-designed single particle aerosol mass spectrometry (SPAMS) system were applied to the direct online detection of VOCs in the atmosphere. The experimental parameters of LIBS experiment were optimized in the measurement of ambient air. Under the best experimental conditions, the characteristic peaks of nitrogen, hydrogen, oxygen, as well as argon, were observed in the LIBS spectra of air. Then, LIBS and SPAMS measurements were performed on Halon 2402, Freon R11 and iodomethane samples under the atmospheric pressure. The characteristic spectral lines of fluorine, chlorine, bromine and iodine were observed and recorded in LIBS spectra. The SPAMS measurements also provide the elemental compositional information of individual VOCs aerosol particles in real time, which is an effective supplement to LIBS analysis. learn more In addition, the different isotopes of bromine and chlorine can be clearly distinguished at the same time. Finally, the home-built portable Raman spectrometer was utilized to analyze the vibrational modes and get the "spectral fingerprint" of VOCs. All the results indicate that the direct online detection performed by the LIBS and SPAMS techniques could provide elemental and isotopic information of halogen atoms in atmospheric VOCs.We investigate the formation of rotational coherence of N2+ resonantly interacting with an intense femtosecond laser field by numerical simulations based on a strong-field ionization-coupling model described with the density matrix formalism. The created N2+ system is unique in many aspects the variable total population within the pump duration due to the intensity-dependent ionization injection, the readily accessible resonance owing to the effect of Stark shift, and the involvement of a few dozen of quantum states. By regarding the N2+ system as an open and non-stationary Λ-type cascaded multi-level system, we quantitatively studied the dependence of rotational coherence in different electronic-vibrational states of N2+ on the alignment angle θ and the pumping intensity. Our simulation results indicate that the quantum coherence between the neighbouring rotational states of J, J+2 in the vibrational state ν=0, 1 of the ground state of N2+ can be changed from a negative to a positive. The significant contribution of rotational coherence to inducing an extra gain or absorption of N2+ air lasing is further verified by solving the Maxwell's propagating equation. The finding provides crucial clues on how to manipulate N2+ lasing by controlling the rotational coherence and paves the way to studying strong-field quantum optics effects such as lasing without inversion and electromagnetically induced transparency in molecular ionic systems.

Autoři článku: Yilmazfisher5200 (Dissing Degn)