Yildizdurham2667

Z Iurium Wiki

This paper describes the development of an iterative three-dimensional parabolic equation solver that takes into account the effects of irregular boundaries and refraction from a layered atmosphere. A terrain-following coordinate transformation, based on the well-known Beilis-Tappert mapping, is applied to the narrow-angle parabolic equation in an inhomogeneous media. The main advantage of this approach, which has been used in two dimensions in the past, is the simplification of the impedance boundary condition at the earth's surface. The transformed initial-boundary value problem is discretized using the Crank-Nicholson marching scheme in the propagating direction and second-order finite-differences in the transversal plane. The proposed method relies on an efficient iterative fixed-point solver, which involves the inversion of tridiagonal matrices only. The accuracy of the method is evaluated through a comparison with boundary element simulations in a homogeneous atmosphere above a Gaussian hill. Results show that transversal scattering occurs in the shadow zone of the obstacle where the two-dimensional parabolic equation underestimates the pressure amplitude. The model is particularly suited for the simulation of infrasound in a three-dimensional environment with realistic topographies.The ultrasonic attenuation coefficient (ACE) can be used to classify tissue state. Pulse-echo spectral-based attenuation estimation techniques, such as the spectral-log-difference method (SLD), account for beam diffraction effects using a reference phantom having a sound speed close to the sound speed of the sample. Methods like SLD assume linear propagation of ultrasound and do not account for potential acoustic nonlinear distortion of the backscattered power spectra in both sample and reference. In this study, the ACE of a sample was computed and compared using the SLD with two independent references (high attenuating and low attenuating phantoms but with similar B/A values) and over several pressure levels. Both numerical and physical tissue-mimicking phantoms were used in the study. The results indicated that the biases in ACE increased when using a reference having low attenuation, whereas the high attenuating reference produced more consistent ACE. Furthermore, increments in ACE vs input pressure were correlated to the log-ratio of Gol'dberg numbers between the sample and reference (R2=0.979 in simulations and R2=0.734 in experiments). Therefore, the results suggest that to reduce bias in ACE using spectral-based methods, both the sound speed and the Gol'dberg number of the reference phantom should be matched to the sample.Comodulation masking release (CMR) is an effect that is associated with auditory sensitivity to coherent amplitude modulations in different frequency regions. The present study investigated if this comodulation is detected by a direct comparison of auditory filter outputs, or if common masker fluctuations are first extracted by a broadly tuned stage that integrates information across a large spectral range. To this end, a modified flanking-band experiment with a narrowband noise masker at the signal frequency (on-frequency masker), and two flanking bands (FBs), one centered below and one above the signal frequency, were used. The center frequencies (CFs) of FBs changed whenever the masker had a local envelope minimum. The center frequencies were randomly chosen from a range of frequencies around the average CF of each FB. A CMR was measured even for large CF variations of FBs, where the envelopes at the off-frequency auditory filters were no longer the same as the masker envelope at the on-frequency auditory filter. This supports the hypothesis of a broadly tuned stage to determine masker comodulation. For two experimental settings, CMR deteriorated for very large variations of CFs of FBs, suggesting a spectral weighting of the off-frequency auditory filters in this broadly tuned stage.Voiced speech is generated by the glottal flow interacting with vocal fold vibrations. However, the details of vibrations in the anterior-posterior direction (the so-called zipper-effect) and their correspondence with speech and other glottal signals are not fully understood due to challenges in direct measurements of vocal fold vibrations. In this proof-of-concept study, the potential of four parameters extracted from high-speed videoendoscopy (HSV), electroglottography, and speech signals to indicate the presence of a zipper-type glottal opening is investigated. Comparison with manual labeling of the HSV videos highlighted the importance of multiple parameter-signal pairs in indicating the presence of a zipper-type glottal opening.This study investigated the effect of presentation level on spectral-ripple detection for listeners with and without sensorineural hearing loss (SNHL). Participants were 25 listeners with normal hearing and 25 listeners with SNHL. Spectral-ripple detection thresholds (SRDTs) were estimated at three spectral densities (0.5, 2, and 4 ripples per octave, RPO) and three to four sensation levels (SLs) (10, 20, 40, and, when possible, 60 dB SL). Each participant was also tested at 90 dB sound pressure level (SPL). Results indicate that level affected SRDTs. However, the effect of level depended on ripple density and hearing status. For all listeners and all RPO conditions, SRDTs improved from 10 to 40 dB SL. this website In the 2- and 4-RPO conditions, SRDTs became poorer from the 40 dB SL to the 90 dB SPL condition. The results suggest that audibility likely controls spectral-ripple detection at low SLs for all ripple densities, whereas spectral resolution likely controls spectral-ripple detection at high SLs and ripple densities. For optimal ripple detection across all listeners, clinicians and researchers should use a SL of 40 dB SL. To avoid absolute-level confounds, a presentation level of 80 dB SPL can also be used.Many animals increase the intensity of their vocalizations in increased noise. This response is known as the Lombard effect. While some previous studies about cetaceans report a 1 dB increase in the source level (SL) for every dB increase in the background noise level (NL), more recent data have not supported this compensation ability. The purpose of this study was to calculate the SLs of humpback whale song units recorded off Hawaii and test for a relationship between these SLs and background NLs. Opportunistic recordings during 2012-2017 were used to detect and track 524 humpback whale encounters comprised of 83 974 units on the U.S. Navy's Pacific Missile Range Facility hydrophones. Received levels were added to their estimated transmission losses to calculate SLs. Humpback whale song units had a median SL of 173 dB re 1 μPa at 1 m, and SLs increased by 0.53 dB/1 dB increase in background NLs. These changes occurred in real time on hourly and daily time scales. Increases in ambient noise could reduce male humpback whale communication space in the important breeding area off Hawaii. Since these vocalization changes may be dependent on location or behavioral state, more work is needed at other locations and with other species.Lateralization of complex high-frequency sounds is conveyed by interaural level differences (ILDs) and interaural time differences (ITDs) in the envelope. In this work, the authors constructed an auditory model and simulate data from three previous behavioral studies obtained with, in total, over 1000 different amplitude-modulated stimuli. The authors combine a well-established auditory periphery model with a functional count-comparison model for binaural excitatory-inhibitory (EI) interaction. After parameter optimization of the EI-model stage, the hemispheric rate-difference between pairs of EI-model neurons relates linearly with the extent of laterality in human listeners. If a certain ILD and a certain envelope ITD each cause a similar extent of laterality, they also produce a similar rate difference in the same model neurons. After parameter optimization, the model accounts for 95.7% of the variance in the largest dataset, in which amplitude modulation depth, rate of modulation, modulation exponent, ILD, and envelope ITD were varied. The model also accounts for 83% of the variances in each of the other two datasets using the same EI model parameters.The goal of this study is to identify laryngeal strategies that minimize vocal fold contact pressure while producing a target sound pressure level (SPL) using a three-dimensional voice production model. The results show that while the subglottal pressure and transverse stiffness can be manipulated to reduce the peak contact pressure, such manipulations also reduce the SPL, and are thus less effective in reducing contact pressure in voice tasks targeting a specific SPL level. In contrast, changes in the initial glottal angle and vocal fold vertical thickness that reduce the contact pressure also increase the SPL. Thus, in voice tasks targeting a specific SPL, such changes in the initial glottal angle and vertical thickness also lower the subglottal pressure, which further reduces the peak contact pressure. Overall the results show that for voice tasks with a target SPL level, vocal fold contact pressure can be significantly reduced by adopting a barely abducted glottal configuration or reducing the vocal fold vertical thickness. Aerodynamic measures are effective in identifying voice production with large initial glottal angles, but by themselves alone are not useful in differentiating hyperadducted vocal folds from barely abducted vocal folds, which may be better differentiated by closed quotient and voice type measures.Consonant-intrinsic F0 (CF0) effects are mainly the result of raising F0 following voiceless obstruents, rather than of lowering F0 following voiced obstruents. However, there are also documented instances where lowered F0 following voiced obstruents is enhanced. Given that both voicing and F0 are affected by prosodic context, it is possible that CF0 is lowered in some contexts but not others. This possibility is investigated by examining CF0 in French and Italian in isolated citation forms. Results are comparable to carrier-phrase contexts, where no F0 lowering after voiced obstruents is observed. Possible sources of the apparent cross-linguistic differences are discussed.Virtual reality environments offer new possibilities in perceptual research, such as presentation of physically impossible but ecologically valid stimuli in contrived scenarios. To facilitate perceptual research in such environments, this study presents a publicly available database of anechoic audio speech samples with matching stereoscopic and 360° video. These materials and accompanying software tool allow researchers to create simulations with up to five talkers positioned at arbitrary azimuthal locations, at multiple depth planes, in any 360° or stereoscopic environment. This study describes recording conditions and techniques, contents of the corpus, and how to use the materials within a virtual reality environment.Some common exercises presented in introductory acoustics courses and texts illustrate solutions involving eigenvalues and eigenfunctions. Challenging extensions of these, even for one-dimensional (1D) systems, might involve a mass or spring loading the acoustic medium at an end point or at an interior point. These problems might be extended further by requiring that some given function be expanded in a series of the eigenfunctions, but such extended problems may lead to unexpected complications in regard to eigenfunction orthogonality. In this paper, Sturm-Liouville theory is used to develop a systematic method for predetermining eigenfunction orthogonality for 1D systems loaded at end points or interior points or having properties that change with jump discontinuities.

Autoři článku: Yildizdurham2667 (Bruun Henriksen)