Ydejohansson6414

Z Iurium Wiki

Anaplasmosis is an economically-significant, hemolytic, tick-borne disease of cattle caused by Anaplasma marginale which can cause clinical anemia and death. Current control options are limited, and FDA-approved antimicrobial control options do not have a defined duration of use. read more A practical and routinely used anaplasmosis control method involves feeding free-choice chlortetracycline (CTC)-medicated mineral to pastured cattle for several months. Constant antimicrobial use poses the risk of expediting the development and dissemination of antimicrobial resistance in off-target commensal bacteria in the bovine gastrointestinal tract. The objective of this study was to determine the CTC-susceptibility of Escherichia coli isolated from anaplasmosis endemic beef cattle herds provided different FDA-approved free-choice CTC-medicated mineral formulations, all intended to provide cattle a dosage of 0.5 to 2.0 mg CTC/lb bodyweight per day. A closed-herd, comprised of Hereford-Angus cows, naturally endemic for anaplasmosis, were grazed in five different pastures with one herd serving as an untreated control group. The other cattle herds were randomly assigned one of four FDA-approved CTC-medicated mineral formulations (700, 5000, 6000, and 8000 g CTC/ton) labeled for "the control of active anaplasmosis" and provided their respective CTC-medicated mineral formulation for five consecutive months. Fecal samples were collected monthly from a subset of cows (n = 6 or 10) per pasture. Fecal samples were cultured for E. coli isolates and the minimal inhibitory concentration of CTC was determined. Baseline CTC-susceptibility of E. coli was variable among all treatment and control groups. The susceptibility of E. coli isolates was significantly different between study herds over the treatment period (p = 0.0037 across time and 0.009 at the final sampling time). The interaction between study herds and treatment period was not significant (p = 0.075).Probiotics are considered ecofriendly alternatives to antibiotics as immunostimulants against pathogen infections in aquaculture. In the present study, protease-, amylase-, cellulase-, and xylanase-producing Bacillus safensis NPUST1 were isolated from the gut of Nile tilapia, and the beneficial effects of B. safensis NPUST1 on growth, innate immunity, disease resistance and gut microbiota in Nile tilapia were evaluated by feeding tilapia a basal diet or basal diet containing 105 and 106-107 CFU/g for 8 weeks. The results showed that the weight gain, feed efficiency and specific growth rate were significantly increased in tilapia fed a diet containing 106 CFU/g and 107 CFU/g B. safensis NPUST1. Intestinal digestive enzymes, including protease, amylase and lipase, and hepatic mRNA expression of glucose metabolism and growth-related genes, such as GK, G6Pase, GHR and IGF-1, were also significantly increased in the 106 CFU/g and 107 CFU/g B. safensis NPUST1 treated groups. Immune parameters such as phagocytic activity, respiratory burst and superoxide dismutase activity in head kidney leukocytes, serum lysozyme, and the mRNA expression of IL-1β, IL-8, TNF-α and lysozyme genes were significantly induced in the head kidney and spleen of 106 CFU/g and 107 CFU/g B. safensis NPUST1 treated fish. The cumulative survival rate was significantly increased in fish fed a diet containing 106 CFU/g and 107 CFU/g B. safensis NPUST1 after challenge with Streptococcus iniae. Dietary supplementation with B. safensis NPUST1 improves the gut microbiota of Nile tilapia, which increases the abundance of potential probiotics and reduces the abundance of pathogenic pathogens. link2 The present study is the first to report the use of B. safensis as a potential probiotic in aquaculture, and a diet containing 106 CFU/g B. safensis NPUST1 is adequate for providing beneficial effects on growth performance and health status in tilapia.Gut-microbiota-targeted nutrition intervention has achieved success in the management of obesity, but its underlying mechanism still needs extended exploration. An obese Prader-Willi syndrome boy lost 25.8 kg after receiving a high-fiber dietary intervention for 105 days. The fecal microbiome sequencing data taken from the boy on intervention days 0, 15, 30, 45, 60, 75, and 105, along with clinical indexes, were used to construct a metagenome-scale metabolic network. Firstly, the abundances of the microbial strains were obtained by mapping the sequencing reads onto the assembly of gut organisms through use of reconstruction and analysis (AGORA) genomes. The nutritional components of the diet were obtained through the Virtual Metabolic Human database. Then, a community model was simulated using the Microbiome Modeling Toolbox. Finally, the significant Spearman correlations among the metabolites and the clinical indexes were screened and the strains that were producing these metabolites were identified. The high-fiber diet reduced the overall amount of metabolite secretions, but the secretions of folic acid derivatives by Bifidobacterium longum strains were increased and were significantly relevant to the observed weight loss. Reduced metabolites might also have directly contributed to the weight loss or indirectly contribute by enhancing leptin and decreasing adiponectin. Metagenome-scale metabolic network technology provides a cost-efficient solution for screening the functional microbial strains and metabolic pathways that are responding to nutrition therapy.Antibiotic-associated diarrhea (AAD) is a self-limiting disease mediated by antibiotic therapy. In clinical practice, several types of probiotics are used in treating AAD, but minimal research has been done on Bacteroides-based microecologics. Our aim was to evaluate the therapeutic effects of Bacteroidetes uniformis FGDLZ48B1, B. intestinalis FJSWX61K18, Bifidobacterium adolescentis FHNFQ48M5, and B. bifidum FGZ30MM3 and their mixture on AAD in mice. The lincomycin hydrochloride-induced AAD models were gavaged with a single strain or a probiotic mixture for a short period to assess the changes in colonic histopathology and cytokine concentrations, intestinal epithelial permeability and integrity, short-chain fatty acids (SCFAs), and the diversity of intestinal microbiota. Our data indicated that both the sole use of Bacteroides and the combination of Bacteroides and Bifidobacterium beneficially weakened systemic inflammation, increased the recovery rate of tissue structures, increased the concentrations of SCFAs, and restored the gut microbiota. Moreover, the probiotic mixture was more effective than the single strain. Specifically, B. uniformis FGDLZ48B1 combined with the B. adolescentis FHNFQ48M5 group was more effective in alleviating the pathological features of the colon, downregulating the concentrations of interleukin (IL)-6, and upregulating the expression of occludin. In summary, our research suggests that administration of a mixture of B. uniformis FGDLZ48B1 and B. adolescentis FHNFQ48M5 is an effective approach for treating AAD.To assess the prevalence of COVID-19 in people living with HIV (PLWHIV), we performed an epidemiological survey from 1 April through 1 August 2020 in an HIV reference center in Northern France. PLWHIV completed a questionnaire about risk exposures and symptoms consistent with COVID-19 and performed a SARS-CoV-2 serology. Among the 600 PLWHIV included, 16 have been infected with SARS-CoV-2. Symptoms consistent with COVID-19 were frequent both in SARS-CoV-2 positive and negative patients (67% vs. 32%, p = 0.02). Among SARS-CoV-2 infected patients, one (6%) has been hospitalized and five (31%) have been asymptomatic. Close contact with a confirmed COVID-19 case was the only factor associated with COVID-19 acquisition (40% vs. 13%, p = 0.01). The prevalence of COVID-19 in PLWHIV was 2.5%, half of the overall population estimate after the first wave of the pandemic in France. In conclusion, proportion of asymptomatic COVID-19 was high in PLWHIV. The prevalence of COVID-19 in PLWHIV was two times lower than in the general population.Exopolysaccharides (EPS) play critical roles in rhizobium-plant interactions. However, the EPS biosynthesis pathway in Bradyrhizobium diazoefficiens USDA110 remains elusive. Here we used transposon (Tn) mutagenesis with the aim to identify genetic elements required for EPS biosynthesis in B. diazoefficiens USDA110. Phenotypic screening of Tn5 insertion mutants grown on agar plates led to the identification of a mutant with a transposon insertion site in the blr2358 gene. This gene is predicted to encode a phosphor-glycosyltransferase that transfers a phosphosugar onto a polyprenol phosphate substrate. The disruption of the blr2358 gene resulted in defective EPS synthesis. Accordingly, the blr2358 mutant showed a reduced capacity to induce nodules and stimulate the growth of soybean plants. Glycosyltransferase genes related to blr2358 were found to be well conserved and widely distributed among strains of the Bradyrhizobium genus. In conclusion, our study resulted in identification of a gene involved in EPS biosynthesis and highlights the importance of EPS in the symbiotic interaction between USDA110 and soybeans.Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that causes a devastating neoplastic disease in chickens. MDV has been shown to integrate its genome into the telomeres of latently infected and tumor cells, which is crucial for efficient tumor formation. Telomeric repeat arrays present at the ends of the MDV genome facilitate this integration into host telomeres; however, the integration mechanism remains poorly understood. Until now, MDV integration could only be investigated qualitatively upon infection of chickens. To shed further light on the integration mechanism, we established a quantitative integration assay using chicken T cell lines, the target cells for MDV latency and transformation. We optimized the infection conditions and assessed the establishment of latency in these T cells. The MDV genome was efficiently maintained over time, and integration was confirmed in these cells by fluorescence in situ hybridization (FISH). To assess the role of the two distinct viral telomeric repeat arrays in the integration process, we tested various knockout mutants in our in vitro integration assay. link3 Efficient genome maintenance and integration was thereby dependent on the presence of the telomeric repeat arrays in the virus genome. Taken together, we developed and validated a novel in vitro integration assay that will shed light on the integration mechanism of this highly oncogenic virus into host telomeres.Human living environments and health are seriously affected by the odor produced from fermentation of livestock and poultry manure. In order to reduce the odor pollution caused by livestock and poultry manure, efficient strains were screened and two methods were tried in this study. The orthogonal test design was used to analyze the gas produced by pig manure under different conditions of temperature, time, wheat straw doping amount and calcium carbonate doping amount. Then, according to ammonia, hydrogen sulfide and comprehensive odor removal effects, the high efficiency of deodorizing strains were screened. The results showed that pig manure produced the least odor when the temperature was 20 °C, added 0% calcium carbonate, 20% wheat straw and waited for 48 h. Three strains were screened to inhibit the odor production of pig manure Paracoccus denitrificans, Bacillus licheniformis and Saccharomyces cerevisiae, showed that their highest removal rate of ammonia and hydrogen sulfide gas could reach 96.58% and 99.

Autoři článku: Ydejohansson6414 (Pritchard Lacroix)