Wynnnyborg0495
Modern human shoulder function is affected by the evolutionary adaptations that have occurred to ensure survival and prosperity of the species. Robust examination of behavioral shoulder performance and injury risk can be holistically improved through an interdisciplinary approach that integrates anthropology and biomechanics. Coordination of these fields can allow different perspectives to contribute to a more complete interpretation of biomechanics of the modern human shoulder. The purpose of this study was to develop a novel biomechanical and comparative chimpanzee glenohumeral model, designed to parallel an existing human glenohumeral model, and compare predicted musculoskeletal outputs between the two models. The chimpanzee glenohumeral model consists of three modules - an external torque module, a musculoskeletal geometric module and an internal muscle force prediction module. Together, these modules use postural kinematics, subject-specific anthropometrics, a novel shoulder rhythm, glenohumeral stability ratios, hand forces, musculoskeletal geometry and an optimization routine to estimate joint reaction forces and moments, subacromial space dimensions, and muscle and tissue forces. Using static postural data of a horizontal bimanual suspension task, predicted muscle forces and subacromial space were compared between chimpanzees and humans. Compared with chimpanzees, the human model predicted a 2 mm narrower subacromial space, deltoid muscle forces that were often double those of chimpanzees and a strong reliance on infraspinatus and teres minor (60-100% maximal force) over other rotator cuff muscles. These results agree with previous work on inter-species differences that inform basic human rotator cuff function and pathology.Behavioural flexibility allows adaptation to environmental changes, a situation that invasive species have often to face when colonizing new territories. Such flexibility arises from a set of cognitive mechanisms among which generalization plays a key role, as it allows the transfer of past solutions to solve similar new problems. By means of a habituation paradigm, we studied generalization in the invasive crayfish Procambarus clarkii Once crayfish had habituated their defensive response to a specific water jet, we tested whether habituation transferred to a new type of water jet. Although habituation did not generalize when the new stimulus was initially presented, it surprisingly emerged 15 and 45 days later. Hence, remarkably, in Pclarkii, a single presentation of a new event was sufficient to trigger a long-lasting form of learning generalization from previous similar stimuli, a cognitive ability that may concur in providing adaptive advantages to this invasive species.Global warming is predicted to increase both acute and prolonged thermal challenges for aquatic ectotherms. Severe short- and medium-term thermal stress over hours to days may cause mortality, while longer sub-lethal thermal challenges may cause performance declines. The inter-relationship between the responses to short, medium and longer thermal challenges is unresolved. We asked if the same individuals are tolerant to both rapid and slow warming challenges, a question that has so far received little attention. Additionally, we investigated the possibility of a thermal syndrome where individuals in a population are distributed along a warm-type to cold-type axis. We tested whether different thermal traits correlate across individuals by acclimating 200 juvenile zebrafish (Danio rerio) to sub- or supra-optimal temperatures for growth (22 and 34°C) for 40 days and measuring growth and thermal tolerance at two different warming rates. We found that tolerance to rapid warming correlated with tolerance to slow warming in the 22°C treatment. However, individual tolerance to neither rapid nor slow warming correlated with growth at the supra-optimal temperature. We thus find some support for a syndrome-like organisation of thermal traits, but the lack of connection between tolerance and growth performance indicates a restricted generality of a thermal syndrome. The results suggest that tolerance to rapid warming may share underlying physiological mechanisms with tolerance to slower heating, and indicate that the relevance of acute critical thermal tolerance extends beyond the rapid ramping rates used to measure them.The production of biotremors has been described in veiled chameleons (Chamaeleo calyptratus), but the mechanism by which they are produced is unknown. We gathered muscle activation data via electromyography (EMG), with simultaneous recordings of biotremors using an accelerometer, to test for the role of hyoid muscles in biotremor production. We recorded a mean biotremor frequency of 150.87 Hz for females and 136.01 Hz for males. The durations of activity and the latencies to onset and offset for the M. sternohyoideus profundus (SP), M. sternohyoideus superficialis (SS), Mm. Temsirolimus manufacturer mandibulohyoideus (MH) and M. levator scapulae (LS) were all significantly correlated with biotremor durations and biotremor onset and offset, respectively. Linear mixed-effect regression model comparisons of biotremor duration indicated that models containing either the MH and/or the SP and LS account for the most variation in biotremor duration. Twitch times for the SP (100 ms) and the SS (132 ms) at field active body temperature, however, were individually too slow to produce the biotremors at the observed frequency without alteration after production by other anatomical structures. These results implicate the SP, SS, MH and LS in the production of biotremors, but the exact mechanism of production requires further study.Muscle ultrastructure is closely linked with athletic performance in humans and lab animals, and presumably plays an important role in the movement ecology of wild animals. Movement is critical for wild animals to forage, escape predators and reproduce. However, little evidence directly links muscle condition to locomotion in the wild. We used GPS-accelerometers to examine flight behaviour and muscle biopsies to assess muscle ultrastructure in breeding black-legged kittiwakes (Rissa tridactyla). Biopsied kittiwakes showed similar reproductive success and subsequent over-winter survival to non-biopsied kittiwakes, suggesting that our study method did not greatly impact foraging ability. Muscle fibre diameter was negatively associated with wing beat frequency, likely because larger muscle fibres facilitate powered flight. The number of nuclei per fibre was positively associated with average air speed, likely because higher power output needed by faster-flying birds required plasticity for muscle fibre recruitment.