Wrenmoss8442
Herbivores can exert major controls over biogeochemical cycling. As invertebrates are highly sensitive to temperature shifts (ectothermal), the abundances of insects in high-latitude systems, where climate warming is rapid, is expected to increase. In subarctic mountain birch forests, research has focussed on geometrid moth outbreaks, while the contribution of background insect herbivory (BIH) to elemental cycling is poorly constrained. https://www.selleckchem.com/products/myk-461.html In northern Sweden, we estimated BIH along 9 elevational gradients distributed across a gradient in regional elevation, temperature, and precipitation to allow evaluation of consistency in local versus regional variation. We converted foliar loss via BIH to fluxes of C, nitrogen (N), and phosphorus (P) from the birch canopy to the soil to compare with other relevant soil inputs of the same elements and assessed different abiotic and biotic drivers of the observed variability. We found that leaf area loss due to BIH was ~1.6% on average. This is comparable to estimates from tundra, but considerably lower than ecosystems at lower latitudes. The C, N, and P fluxes from canopy to soil associated with BIH were 1-2 orders of magnitude lower than the soil input from senesced litter and external nutrient sources such as biological N fixation, atmospheric deposition of N, and P weathering estimated from the literature. Despite the minor contribution to overall elemental cycling in subarctic birch forests, the higher quality and earlier timing of the input of herbivore deposits to soils compared to senesced litter may make this contribution disproportionally important for various ecosystem functions. BIH increased significantly with leaf N content as well as local elevation along each transect, yet showed no significant relationship with temperature or humidity, nor the commonly used temperature proxy, absolute elevation. The lack of consistency between the local and regional elevational trends calls for caution when using elevation gradients as climate proxies.The commercialized genetically modified papaya "Huanong No. 1" has been utilized to successfully control the destructive virus-papaya ringspot virus (PRSV) in South China since 2006. However, another new emerging virus, papaya leaf distortion mosaic virus (PLDMV), was found in some PRSV-resistant transgenic plants in Guangdong and Hainan provinces of South China through a field investigation from 2012 to 2019. The survey results showed that "Huanong No. 1" papaya plants are susceptible to PLDMV, and the disease prevalence in Hainan Province is generally higher than that in Guangdong Province. Twenty representative isolates were selected to inoculate "Huanong No. 1," and all of the inoculated plants showed obvious disease symptoms similar to those in the field, indicating that PLDMV is a new threat to widely cultivated transgenic papaya in South China. Phylogenetic analysis of 111 PLDMV isolates in Guangdong and Hainan based on the coat protein nucleotide sequences showed that PLDMV isolates can be divided into two groups. The Japan and Taiwan China isolates belong to group I, whereas the Guangdong and Hainan isolates belong to group II and can be further divided into two subgroups. The Guangdong and Hainan isolates are far different from the Japan and Taiwan China isolates and belong to a new lineage. Further analysis showed that the Guangdong and Hainan isolates had a high degree of genetic differentiation, and no recombination was found. These isolates deviated from neutral evolution and experienced population expansion events in the past, which might still be unstable. The results of this study provide a theoretical basis for clarifying the evolutionary mechanism and population genetics of the virus and for preventing and controlling the viral disease.The oak longhorned beetle (OLB), Massicus raddei (Blessig, 1872) (Coleoptera Cerambycidae), is widely distributed in Asia (China, the Korean Peninsula, Japan, Vietnam and the Russian Far-East), but pest outbreaks have occurred only in Liaoning Province and Jilin Province of China. In order to explore possible mechanisms of local population outbreaks and characterize the genetic diversity and genetic structure of M. raddei across its range in China, three mitochondrial genes (COI, Cytb, and COII) were sequenced and analyzed for seven M. raddei populations collected from six provinces in China. From these different populations, we found a high haplotype and nucleotide diversity. Haplotype networks and phylogenetic analyses both demonstrate apparent genetic diversification between SC (southern China) and NC (northern China) population groups. A set of 21 pairwise comparisons for Fst (pairwise fixation indices) and Nm (genetic flow index) showed significant genetic differentiation and limited gene flow except forderate flight capacity, regional variation in host tree species and microclimate, as well as the geographic distance between sampling sites."Islands of fertility" result from the focussing of water and nutrients around many shrub or tree species due to plants foraging for resources. Plant-animal feedbacks may amplify the development of such islands through environmental modification due to, for example, faunal deposition of nutrients and seeds. Fauna residing within vegetation clumps are likely to exert stronger feedbacks on their hosts than itinerant species. We studied the interaction between camel thorn trees (Vachellia erioloba) and the colonial nests of sociable weavers (Philetairus socius) in the Kalahari. We hypothesized that the accumulation of biological material below the nests will alter the nutrient status of the soil beneath the nest trees, in relation to unoccupied trees and the surrounding grassland. We also suggested that this association will have both positive and negative effects on the camel thorn trees. We found that soil concentrations of N, P, and K were, respectively, 4, 4.6, and 1.2 times higher below trees with nests comhorn trees when hosting sociable weaver colonies. These benefits can potentially overcome important environmental constraints, but these are partially offset by the resulting costs to the host trees.