Wrenfitzgerald8115

Z Iurium Wiki

The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) global pandemic significantly impacted CF clinical research within the Cystic Fibrosis Foundation Therapeutics Development Network (CFF TDN). A Research Electronic Data Capture (REDCap) survey was developed and sent to network sites to monitor and understand the impact on research teams, ongoing and anticipated clinical research, and specific clinical and research procedures. Key findings indicated an early impact on participant enrollment, research team stability, and procedures such as spirometry and sputum induction. These trends steadily improved over the months as research activities began to recover across the TDN. While SARS-CoV-2 created a significant challenge it also highlights new opportunities to expand CF research with greater focus on data collection outside of research centers and increased access for remote participation.Compared to other neurodegenerative diseases, Parkinson's disease (PD) is distinctive in terms of marked symptomatic variability and prognosis, as well as for the wide variety of symptomatic treatment options. Despite several decades of advances in medications and neurosurgical approaches, there remains an unmet need for symptomatic motor control. Better control of tremor, gait and balance, posture, dexterity, and communication skills are major challenges for better therapeutics of the PD movement disorder. Non-motor symptoms (NMS), which often precede motor impairments, add complexity to the burden of PD and its management. Recognized by James Parkinson MD two centuries ago, and despite 21st century neurological advances, a range of NMS plague the patient's journey, from prodromal to palliative stages. Characterizing the clinical phenotype of the entire non-motor profile of PD is challenging. CH-223191 mouse Further research and understanding are needed for discovering biomarkers of certain NMS, such as dementia, fatigue, pain, sleep, and apathy. More work is needed to gather a robust evidence base for guiding treatment of troubling NMS, which exert a major impact on quality of life for people with PD and their caregivers.Laboratory and clinical experience have pointed to the value of targeting motor pathways emerging from the striatum to treat problems arising in advanced Parkinson's disease (PD). These pathways are selectively populated with a subtype of adenosine binding sites (A2A receptors) that offer a target for improving PD symptomatology. Several compounds were developed that possess high selectivity and potency for blocking this receptor. Three of these compounds - istradefylline, preladenant, and tozadenant - were chosen for clinical development programs that culminated in Phase 3 multicenter randomized clinical trials. Each of these drugs exert virtually no off-target neurochemical effects. Clinical trials with these drugs focused upon reducing OFF time when administered adjunctly to levodopa and other antiparkinsonian medications. Despite promising Phase 2 data, preladenant did not show efficacy when tested in a randomized placebo-controlled Phase 3 clinical trial. Reports of hematological toxicity necessitated ceasing an ongoing Phase 3 investigation of tozadenant. Following a challenging approval process, based on the results of randomized clinical trials carried out in the U.S. and Japan, istradefylline received approval in these countries for treatment of OFF episodes.The adenosine A2A receptor is a major target of caffeine, the most widely used psychoactive substance worldwide. Large epidemiological studies have long shown caffeine consumption is a strong inverse predictor of Parkinson's disease (PD). In this review, we first examine the epidemiology of caffeine use vis-à-vis PD and follow this by looking at the evidence for adenosine A2A receptor antagonists as potential neuroprotective agents. There is a wealth of accumulating biological, epidemiological and clinical evidence to support the further investigation of selective adenosine A2A antagonists, as well as caffeine, as promising candidate therapeutics to fill the unmet need for disease modification of PD.While Parkinson's disease (PD) is traditionally characterized by dopaminergic neuron degeneration, several neurotransmitters and neuromodulators besides dopamine are also involved in the onset and progression of the disease and its symptoms. The other principal neurotransmitters/neuromodulators known to control basal ganglia functions and, in particular, motor functions, are GABA, glutamate, serotonin (5-HT), noradrenaline, acetylcholine, adenosine and endocannabinoids. Among these, adenosine is the most relevant, acting through its adenosine A2A receptor. Work in experimental models of PD has established the effects of A2A receptor antagonists, including the alleviation of disrupted dopamine functions and improved efficacy of dopamine replacement therapy. Moreover, positive interactions between A2A receptor antagonists and both D2 and D1 receptor agonists have been described in vitro at the receptor-receptor level or in more complex in vivo models of PD, respectively. In addition, the interactions between A2A receptor antagonists and glutamate ionotropic GluN2B-containing N-Methyl-d-aspartic acid receptors, or metabotropic glutamate (mGlu) receptors, including both mGlu5 receptor inhibitors and mGlu4 receptor activators, have been reported in both in vitro and in vivo animal models of PD, as have positive interactions between A2A and endocannabinoid CB1 receptor antagonists. At the same time, a combination of A2A receptor antagonists and 5-HT1A-5-HT1B receptor agonists have been described to modulate the expression of dyskinesia induced by chronic dopamine replacement therapy.The quest for a non-dopaminergic approach to treating Parkinson's disease (PD) has been quietly progressing over the past several decades, and is now finding its momentum. Here, in what is more a memoir than a comprehensive review, we discuss work carried out over the past 50 years to show that adenosine acts as a critical signaling molecule via actions against a specific family of receptors. Importantly for PD, adenosine A2A receptors have a selective localization to the basal ganglia and specifically to the indirect output pathway, offering a targeted, non-dopaminergic opportunity to modulate basal ganglia output.

Autoři článku: Wrenfitzgerald8115 (Jennings Godfrey)