Wrenfiltenborg3205
Hydrogen sulfide (H 2S) is an important messenger for its strong anti-inflammatory effects, which may be involved in multiple cardiovascular diseases. In our previous study, we revealed that H 2S attenuated diabetes-accelerated atherosclerosis through suppressing oxidative stress. Here we report that GYY4137, a H 2S donor, reduced the plaque formation of aortic roots and the levels of both intercellular cell adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1) in diabetes-accelerated atherosclerotic cells and mouse models. The inflammatory factors of TNF-α, IL-1β, IL-6, and MCP1 were also significantly reduced by GYY4137. Mechanically, GYY4137 suppressed the activation of pyrin domain containing protein 3 (NLRP3) inflammasome in diabetes-accelerated atherosclerosis conditions. Tamoxifen Angiogenesis chemical Upon knockdown of NLRP3, the increase of ICAM1 and VCAM1 caused by high glucose and oxLDL could be reversed, indicating that H 2S protected the endothelium by inhibiting the activity of NLRP3 inflammasome. In conclusion, our study indicates that GYY4137 effectively protects against the development of diabetes-accelerated atherosclerosis by inhibiting inflammasome activation.Neutrophils are major innate immune effector cells for host defense and have been a topic of active research for their participation in the pathogenesis of autoimmune inflammatory diseases including rheumatoid arthritis (RA) due to recently discovered neutrophil extracellular trap (NET) formation. NET formation and other mechanisms leading to the release of neutrophil nuclear and cytoplasmic contents are implicated as a source of citrullinated antigens in RA. Further investigations are required to delineate what factors diverge neutrophils from host defense to autoimmune response in RA.Malignant hyperthermia (MH) is a rare and life-threatening pharmacogenetic disorder triggered by volatile anesthetics, the depolarizing muscle relaxant succinylcholine, and rarely by strenuous exercise or environmental heat. The exact prevalence of MH is unknown, and it varies from 116 000 in Denmark to 1100 000 in New York State. The underlying mechanism of MH is excessive calcium release from the sarcoplasmic reticulum (SR), leading to uncontrolled skeletal muscle hyper-metabolism. Genetic mutations in ryanodine receptor type 1 ( RYR1) and CACNA1S have been identified in approximately 50% to 86% and 1% of MH-susceptible (MHS) individuals, respectively. Classic clinical symptoms of MH include hypercarbia, sinus tachycardia, masseter spasm, hyperthermia, acidosis, muscle rigidity, hyperkalemia, myoglobinuria, and etc. There are two types of testing for MH a genetic test and a contracture test. Contracture testing is still being considered as the gold standard for MH diagnosis. Dantrolene is the only available drug approved for the treatment of MH through suppressing the calcium release from SR. Since clinical symptoms of MH are highly variable, it can be difficult to establish a diagnosis of MH. Nevertheless, prompt diagnosis and treatments are crucial to avoid a fatal outcome. Therefore, it is very important for anesthesiologists to raise awareness and understand the characteristics of MH. This review summarizes epidemiology, clinical symptoms, diagnosis and treatments of MH and any new developments.Osteosarcoma (OS) is the most common bone tumor in children and adolescents and is characterized by high metastatic and recurrence rates. In the past, it has been shown that microRNAs may play critical roles in hypoxia-related OS proliferation and invasion. However, the mechanisms by which OS cells acquire this malignant phenotype have remained largely unknown. In the present study, we report that let-7f-5p and TARBP2 were expressed in lower amounts in human OS cell lines when compared with the hFOB normal human osteoblastic cell line; however, both types of cells were repressed by hypoxia. let-7f-5p and TARBP2 significantly inhibited the proliferation and invasion of OS cells. Furthermore, TARBP2 as a downstream and functional target of let-7f-5p regulated the expression of let-7f-5p, and there was a regulatory feedback loop between let-7f-5p and TARBP2. This loop reduced the expression of let-7f-5p and TARBP2 in OS cells to a very low level, which was induced by hypoxia. Furthermore, the hypoxia-induced let-7f-5p/TARBP2 feedback loop contributed to activation of the Wnt signaling pathway. Taken together, our data clearly showed that the feedback loop between let-7f-5p and TARBP2 induced by the hypoxia-promoted OS cell malignant phenotype increased with activation of the Wnt signaling pathway.Mounting evidence suggests that long noncoding RNAs serve as specific biomarkers and potent modulators of multiple cancers. Long intergenic non-protein coding RNA 324 (LINC00324) is ubiquitously expressed in various tissues, including breast cancer. The biological function of LINC00324 in the development and progression of breast cancer remains unknown. Here, we fully elucidate the relation between LINC00324 expression and breast cancer, and suggest a potential mechanism of action. We found that decreased expression of LINC00324 was dramatically correlated with malignancy of breast cancer, both in breast cancer tissues and in cell lines. Overexpression of LINC00324 in MDA-MB-231 cells resulted in a decrease in cell proliferation, invasion, and migration, while increasing cells apoptosis. On the other hand, loss-of-function experiments indicated that deficiency of LINC00324 promoted malignant phenotypes in breast cancer cells. Mechanically, we found that LINC00324 is mainly distributed in the cytoplasm, fostering the expression of E-cadherin by sponging miR-10b-5p. Taken together, these findings suggest that LINC00324 plays a critical role in breast cancer progression by directly interacting with miR-10b-5p. LINC00324 can thus potentially act as an early diagnostic marker and a novel therapeutic agent for breast cancer.Circular RNAs (circRNAs) play an important role in bladder cancer (BC). Though circRNA involvement in BC has been reported, the underlying regulatory mechanisms are unknown. In this study, we performed EdU, CCK8, colony formation and Transwell assays to establish the role of circRGNEF in BC cell migration, proliferation, and invasion. We used bioinformatics and luciferase reporter experiments to investigate the regulatory mechanism. Nude mice xenografts and live imaging were used to explore the role of circRGNEF in tumor metastasis and growth. Expression profile analysis of human circRNAs in BC revealed that circRGNEF was upregulated significantly. High circRGNEF expression was correlated with aggressive BC phenotypes. The downregulation of circRGNEF suppressed BC cell metastasis and proliferation by targeting the miR-548/KIF2C axis in vitro and in vivo; these results were verified with luciferase reporter assays. Our results show that miR-548 downregulation or KIF2C overexpression restored BC cell proliferation, migration, and invasion following silencing of circRGNEF.