Woodwardkahn0856

Z Iurium Wiki

monocytogenes infection by slowing the recycling of its host cell receptor c-Met, highlighting a previously undescribed role of mitochondrial respiration during infection.Impaired hepatic glucose and lipid metabolism are hallmarks of type 2 diabetes. Increased sulfide production or sulfide donor compounds may beneficially regulate hepatic metabolism. Disposal of sulfide through the sulfide oxidation pathway (SOP) is critical for maintaining sulfide within a safe physiological range. We show that mice lacking the liver- enriched mitochondrial SOP enzyme thiosulfate sulfurtransferase (Tst-/- mice) exhibit high circulating sulfide, increased gluconeogenesis, hypertriglyceridemia, and fatty liver. Unexpectedly, hepatic sulfide levels are normal in Tst-/- mice because of exaggerated induction of sulfide disposal, with associated suppression of global protein persulfidation and nuclear respiratory factor 2 target protein levels. Hepatic proteomic and persulfidomic profiles converge on gluconeogenesis and lipid metabolism, revealing a selective deficit in medium-chain fatty acid oxidation in Tst-/- mice. We reveal a critical role of TST in hepatic metabolism that has implications for sulfide donor strategies in the context of metabolic disease.Regulatory T (Treg) cells are critical for immunological tolerance and immune homeostasis. Treg cells strongly rely on mitochondrial metabolism and show a lower level of glycolysis. However, little is known about the role of lipid metabolism in the regulation of Treg cell homeostasis. Some members of the ACSL family of acyl-coenzyme A (CoA) synthases are expressed in T cells, but their function remains unclear. A combination of RNA-sequencing and proteome analyses shows that Acsbg1, a member of ACSL, is selectively expressed in Treg cells. We show that the genetic deletion of Acsbg1 not only causes mitochondrial dysfunction, but it also dampens other metabolic pathways. The extrinsic supplementation of Acsbg1-deficient Treg cells with oleoyl-CoA restores the phenotype of the Treg metabolic signature. Furthermore, this pathway in ST2+ effector Treg cells enhances immunosuppressive capacity in airway inflammation. Thus, Acsbg1 serves as a metabolic checkpoint governing Treg cell homeostasis and the resolution of lung inflammation.Memory T cells exhibit considerable diversity that determines their ability to be protective. Here, we examine whether changes in T cell heterogeneity contribute to the age-associated failure of immune memory. By screening for age-dependent T cell-surface markers, we identify CD4 and CD8 memory T cell subsets that are unrelated to previously defined subsets of central and effector memory cells. Memory T cells expressing the ecto-5'-nucleotidase CD73 constitute a functionally distinct subset of memory T cells that declines with age. They resemble long-lived, polyfunctional memory cells but are also poised to display effector functions and to develop into cells resembling tissue-resident memory T cells (TRMs). Upstream regulators of differential chromatin accessibility and transcriptomes include transcription factors that facilitate CD73 expression and regulate TRM differentiation. CD73 is not just a surrogate marker of these regulatory networks but is directly involved in T cell survival.Impaired synaptic neurotransmission may underly circuit alterations contributing to behavioral autism spectrum disorder (ASD) phenotypes. A critical component of impairments reported in somatosensory and prefrontal cortex of ASD mouse models are parvalbumin (PV)-expressing fast-spiking interneurons. However, it remains unknown whether PV interneurons mediating hippocampal networks crucial to navigation and memory processing are similarly impaired. Using PV-labeled transgenic mice, a battery of behavioral assays, in vitro patch-clamp electrophysiology, and in vivo 32-channel silicon probe local field potential recordings, we address this question in a Cntnap2-null mutant mouse model representing a human ASD risk factor gene. Cntnap2-/- mice show a reduction in hippocampal PV interneuron density, reduced inhibitory input to CA1 pyramidal cells, deficits in spatial discrimination ability, and frequency-dependent circuit changes within the hippocampus, including alterations in gamma oscillations, sharp-wave ripples, and theta-gamma modulation. Our findings highlight hippocampal involvement in ASD and implicate interneurons as a potential therapeutical target.Sphingomyelin (SM) is a mammalian lipid mainly distributed in the outer leaflet of the plasma membrane (PM). We show that peripheral myelin protein 2 (PMP2), a member of the fatty-acid-binding protein (FABP) family, can localize at the PM and controls the transbilayer distribution of SM. Genetic screening with genome-wide small hairpin RNA libraries identifies PMP2 as a protein involved in the transbilayer movement of SM. A biochemical assay demonstrates that PMP2 is a phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-binding protein. PMP2 induces the tubulation of model membranes in a PI(4,5)P2-dependent manner, accompanied by the modification of the transbilayer membrane distribution of lipids. In the PM of PMP2-overexpressing cells, inner-leaflet SM is increased whereas outer-leaflet SM is reduced. PMP2 is a causative protein of Charcot-Marie-Tooth disease (CMT). A mutation in PMP2 associated with CMT increases its affinity for PI(4,5)P2, inducing membrane tubulation and the subsequent transbilayer movement of lipids.

Astrocytes re-acquire stem cell potential upon inflammation, thereby becoming a promising source of cells for regenerative medicine. Nanog is an essential transcription factor to maintain the characteristics of stem cells. We aimed to investigate the role of Nanog in astrocyte dedifferentiation.

TNF-α was used to induce the dedifferentiation of primary rat spinal cord astrocytes. 2-DG modulator The expression of immature markers CD44 and Musashi-1 was detected by qRT-PCR and immunofluorescence. The Nanog gene is knocked down by small interference RNA. Nanog expression was measured by qRT-PCR and western blotting. BAY 11-7082 was used to suppress NF-κB signals in astrocytes. NF-κB signaling was evaluated by Western blotting.

Our results showed that TNF-α promoted the re-expression of CD44 and Musashi-1 in astrocytes. Dedifferentiated astrocytes could be induced to differentiate into oligodendrocyte lineage cells indicating that the astrocytes had pluripotency. In addition, TNF-α treatment activated NF-κB signaling pathway and up-regulated Nanog. Knockdown of Nanog reversed the increase of CD44 and Musashi-1 induced by TNF-α without affecting the activation of NF-κB signaling. Importantly, blocking NF-κB signaling by BAY 11-7082 inhibited the expression of immature markers suggesting that TNF-α induces dedifferentiation of astrocytes through the NF-κB signaling pathway. BAY 11-7082 could also inhibit the expression of Nanog, which indicated that Nanog was regulated by NF-κB signaling pathway.

These findings indicate that activation of the NF-κB signaling pathway through TNF-α leads to astrocytes dedifferentiation via Nanog. These results expand our understanding of the mechanism of astrocytes dedifferentiation.

These findings indicate that activation of the NF-κB signaling pathway through TNF-α leads to astrocytes dedifferentiation via Nanog. These results expand our understanding of the mechanism of astrocytes dedifferentiation.RTN4-binding proteins were widely studied as "NoGo" receptors, but their physiological interactors and roles remain elusive. Similarly, BAI adhesion-GPCRs were associated with numerous activities, but their ligands and functions remain unclear. Using unbiased approaches, we observed an unexpected convergence RTN4 receptors are high-affinity ligands for BAI adhesion-GPCRs. A single thrombospondin type 1-repeat (TSR) domain of BAIs binds to the leucine-rich repeat domain of all three RTN4-receptor isoforms with nanomolar affinity. In the 1.65 Å crystal structure of the BAI1/RTN4-receptor complex, C-mannosylation of tryptophan and O-fucosylation of threonine in the BAI TSR-domains creates a RTN4-receptor/BAI interface shaped by unusual glycoconjugates that enables high-affinity interactions. In human neurons, RTN4 receptors regulate dendritic arborization, axonal elongation, and synapse formation by differential binding to glial versus neuronal BAIs, thereby controlling neural network activity. Thus, BAI binding to RTN4/NoGo receptors represents a receptor-ligand axis that, enabled by rare post-translational modifications, controls development of synaptic circuits.Chromosome mis-segregation during mitosis leads to aneuploidy, which is a hallmark of cancer and linked to cancer genome evolution. Errors can manifest as "lagging chromosomes" in anaphase, although their mechanistic origins and likelihood of correction are incompletely understood. Here, we combine lattice light-sheet microscopy, endogenous protein labeling, and computational analysis to define the life history of >104 kinetochores. By defining the "laziness" of kinetochores in anaphase, we reveal that chromosomes are at a considerable risk of mis-segregation. We show that the majority of lazy kinetochores are corrected rapidly in anaphase by Aurora B; if uncorrected, they result in a higher rate of micronuclei formation. Quantitative analyses of the kinetochore life histories reveal a dynamic signature of metaphase kinetochore oscillations that forecasts their anaphase fate. We propose that in diploid human cells chromosome segregation is fundamentally error prone, with an additional layer of anaphase error correction required for stable karyotype propagation.Protection of peri-centromeric (periCEN) REC8 cohesin from Separase and sister kinetochore (KT) attachment to microtubules emanating from the same spindle pole (co-orientation) ensures that sister chromatids remain associated after meiosis I. Both features are lost during meiosis II, resulting in sister chromatid disjunction and the production of haploid gametes. By transferring spindle-chromosome complexes (SCCs) between meiosis I and II in mouse oocytes, we discovered that both sister KT co-orientation and periCEN cohesin protection depend on the SCC, and not the cytoplasm. Moreover, the catalytic activity of Separase at meiosis I is necessary not only for converting KTs from a co- to a bi-oriented state but also for deprotection of periCEN cohesion, and cleavage of REC8 may be the key event. Crucially, selective cleavage of REC8 in the vicinity of KTs is sufficient to destroy co-orientation in univalent chromosomes, albeit not in bivalents where resolution of chiasmata may also be required.Genotype imputation is the inference of unknown genotypes using known population structure observed in large genomic datasets; it can further our understanding of phenotype-genotype relationships and is useful for QTL mapping and GWASs. However, the compute-intensive nature of genotype imputation can overwhelm local servers for computation and storage. Hence, many researchers are moving toward using cloud services, raising privacy concerns. We address these concerns by developing an efficient, privacy-preserving algorithm called p-Impute. Our method uses homomorphic encryption, allowing calculations on ciphertext, thereby avoiding the decryption of private genotypes in the cloud. It is similar to k-nearest neighbor approaches, inferring missing genotypes in a genomic block based on the SNP genotypes of genetically related individuals in the same block. Our results demonstrate accuracy in agreement with the state-of-the-art plaintext solutions. Moreover, p-Impute is scalable to real-world applications as its memory and time requirements increase linearly with the increasing number of samples.

Autoři článku: Woodwardkahn0856 (McCallum Langley)