Woodslindgreen7347
Primary outcomes were observed in 6,539 patients (3.0%). The crude rate of the primary outcome was lowest in institutions with the highest PCI volume (Q1 3.4%, Q2 3.0%, Q3 3.0%, Q4 2.4%, p less then 0.001); higher PCI volume was associated with reduced frequency of the primary outcome (odds ratio [95% confidence interval] relative to Q1Q2, 0.89 [0.83 to 0.96]; Q3 0.90 [0.84 to 0.97]; and Q4 0.76 [0.84 to 0.97]). In conclusion, the procedural characteristics and outcomes of PCI differed significantly by institutional volume in patients with CKD. When considering revascularization among these patients, institutional CKD-PCI volume needs to be incorporated in decision-making.To develop a facile and low-cost nanofibrils process with excellent feedstock adaptability, high-yield lignocellulose nanofibrils (LCNF) are produced directly from wood and non-wood biomass using glycerol solvent via screw extrusion pretreatment. Different LCNFs are obtained from four classical raw materials (polar, pine, bamboo, and wheat straw) in this research, followed by comparing their morphological, thermochemical, and mechanical properties. More than 70 wt% of LCNF could be obtained from low-cost substrates except for LCNF from wheat straw with 62.3 wt% yield. Besides, the morphology property of wood LCNF exhibit more uniform distribution over that of non-wood LCNF due to narrower size distribution. Strikingly, despite of the slightly lower LCNF crystallinity various from 52.4% to 62.6% obtained from four substrates, all the LCNFs separated from wood and non-wood biomass exhibit high thermal stability (Tmax over 330 °C), which is higher than conventional nanocellulose, indicating that the crystal area could be well maintained during the pretreated process. Moreover, all the LCNF films show excellent tensile strength which is close to nanocellulose materials. Besides, the Young's modulus of wood-based LCNF films is higher than that of non-wood based LCNF films. Overall, LCNF with excellent performance could be achieved from low-cost biomass by our facile process, which provides a feasible route for industrial production of bio-based nanofilms.A new synthesis method was developed and optimized by a full factorial design for conjugating hydroxycinnamic acids (HCA-s) to chitosan. Cinnamic acid and tert-butyldimethylsilyl protected HCA-s were converted to their corresponding acyl chlorides and reacted with 3,6-di-O-tert-butyldimethylsilyl-chitosan to selectively form amide linkages, resulting in water-soluble conjugates after deprotection. Nineteen conjugates were obtained with various degrees of substitution (DS) ranging from 3% to 60%. The conjugates were found to be bactericidal against Staphylococcus aureus and Escherichia coli, with their activities equal to chitosan at low DS but an increase in the DS correlated with reduced activity. DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging assay was performed to determine the EC50 values. Chitosan only exhibited low antioxidant activity, whereas the HCA-chitosan conjugates exhibited higher antioxidant activities correlating with the DS. One caffeic acid conjugate (21%) was 4000 times more active than chitosan and more active than free caffeic acid.A simple relation between pendant groups of polymers in hydrogels is introduced to determine the crosslink density of (complex) hydrogel systems (mixtures of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) modified nanocellulose, alginate, scleroglucan and Laponite in addition of crosslinking agents). Furthermore, the rheological properties and their great potential connection to design complex hydrogel systems with desired properties have been thoroughly investigated. Linsitinib datasheet Hydrogel structures governing internal friction and flow resistance were described by the predominant effect of ionic, hydrogen, and electrostatic interactions. The relationship between rheological properties and polymer-polymer interactions in the hydrogel network is explained and expressed in a new mathematical model for determining the crosslink density of (crosslinked) hydrogels based on single or mixture of polymer systems. In the end, the combined used of rheology and low field nuclear magnetic resonance spectroscopy (LF-NMR) for the characterization of hydrogel networks is developed.Chitin refers to a natural biopolymer, which is economically significant to next-generation biorefineries. In this study, a novel high-yield method with cell surface-display chitosanase (CHI-1) was built to produce chitooligosaccharides (COS) from shrimp chaff through the co-fermentation in the presence of Bacillus subtilis and Acetobacter sp. Under the optimized co-fermentation conditions (5 g/L yeast extracts, 10 g/L KH2PO4, 6% ethanol, 50 g/L glucose), the final deproteinization (DP) and demineralization (DM) efficiency and the chitin yield were achieved as 94, 92 and 18%, respectively. The engineered E. coli BL21-pET23b(+)-NICHI maintained 81% of the initial enzyme activity after 40 days at room temperature. The crude CHI-1 was inactivated after one-day interacting with prepared chitosan. Moreover, E. coli BL21-pET23b(+)-NICHI still maintained excellent hydrolysis ability in 7 days, and the COS yield reached 41%. Accordingly, the proposed method exhibited excellent stability and a high hydrolysis efficiency to produce COS with whole engineered cells.Graminan-type fructans (GTFs) have demonstrated immune benefits. However, mechanisms underlying these benefits are unknown. We studied GTFs interaction with Toll-like receptors (TLRs), performed molecular docking and determined their impact on dendritic cells (DCs). Effects of GTFs were compared with those of inulin-type fructans (ITFs). Whereas ITFs only contained β(2→1)-linked fructans, GTFs showed higher complexity as it contains additional β(2→6)-linkages. GTFs activated NF-κB/AP-1 through MyD88 and TRIF pathways. GTFs stimulated TLR3, 7 and 9 while ITFs activated TLR2 and TLR4. GTFs strongly inhibited TLR2 and TLR4, while ITFs did not inhibit any TLR. Molecular docking demonstrated interactions of fructans with TLR2, 3, and 4 in a structure dependent fashion. Moreover, ITFs and GTFs attenuated pro-inflammatory cytokine production of stimulated DCs. These findings demonstrate immunomodulatory effects of GTFs via TLRs and attenuation of cytokine production in dendritic cells by GTFs and long-chain ITF.Herein, a pH-responsive cyclodextrin derivative (R6H4-CMβCD) with cell-penetrating ability was successfully synthesized, and curcumin-loaded nanoparticles (R6H4-CMβCD@CUR NPs, RCCNPs) were developed to improve its efficacy in hepatoma. RCCNPs could improve the cell uptake compared with CMβCD@CUR NPs (CCNPs) and were internalized into cells mainly through endocytosis mediated by reticulin and macropinocytosis. Furthermore, the accumulation of RCCNPs in hepatoma cells at pH 6.4 was higher than that at pH 7.4, indicating a pH-responsive uptake. Additionally, RCCNPs could escape from the lysosomes via the "proton sponge effect", and a high apoptosis rate was detected. Importantly, in vivo experiments revealed that orally administered RCCNPs could exert excellent anti-cancer effects in tumor-bearing mice. Hematoxylin-eosin staining did not show significant histological changes in the major organs. Thus, our findings indicate the potential of R6H4-CMβCD as a nanopharmaceutical material, and RCCNPs as an effective delivery system for oral curcumin in cancer management.When organic polymer-based drug nanocarriers become concentrated in macrophages, their influence on macrophage polarization has been rarely reported. This study prepared chitosan-based nanoparticles (CNs, 181.5 nm, +14.83 mV) and detected their impacts on macrophage reprogram. RT-PCR results showed in M1-like RAW264.7 cells (Mφ1), CNs decreased CD86 and iNOS expressions by 53.8% and 57.1%, and increased Arg-1 and IL-10 by 642.9% and 102.1%; in M2-like cells (Mφ2), CNs reduced Arg-1 and MR expressions by 70.7% and 93.0%, but increased CD86, iNOS and TNF-α by 290.4%, 86.2% and 728.6%; these results, consistent with cytokine secretions and surface CD86/CD206 expressions, showed CNs polarized Mφ1 and Mφ2 toward opposite type so as to improve the macrophage polarization homeostasis. In CCl4-induced mouse liver injury model, CNs reduced the hepatic Mφ1/Mφ2 ratio from 1.1 (model group) to 0.3, and then reduced the serum AST and ALT level by 42.3% and 39.0%; in mouse model of hepatocellular carcinoma, CNs decreased the number of CD163-positive cells and increased CD86-positive ones in tumor, and subsequently inhibited the tumor growth and metastasis. This study suggests CNs can improve the phenotype homeostasis of macrophages and subsequently promote the treatment of certain diseases such as liver injury and tumor.Nanocellulose holds considerable promise as an effective surface-enhanced Raman scattering (SERS) substrate for sensitive detection of trace targets. Flexible and high-sensitivity two-dimensional (2D) SERS substrates based on nanocrystalline cellulose (CNC) film were successfully developed via self assembly of two plasma nanoparticles gold nanoflowers (AuNFs) and silver-coated gold nanocubes (Au@AgNCs). The loading process allows the precise control of nanoparticle distribution density and uniformity on CNC film, which are closely related to the plasma coupling effect between particles. The obtained CNC/Au@AgNC flexible two-dimensional substrate could sensitively detect pesticide residues on apple surface, and the detection limits (LOD) of dimethoate and acetamiprid were 4.1 and 10.7 μg/L, respectively. In addition, Raman signal intensity showed a good linear relationship with pesticide concentration in the range of 10-100 μg/L, which provided great potential for high sensitivity and field detection of dangerous targets.Anterior uveitis is a sight-threatening inflammation inside the eyes. Conventional eye drops for anti-inflammatory therapy need to be administered frequently owing to the rapid elimination and corneal barrier. To address these issues, polypseudorotaxane hydrogels were developed by mixing Soluplus micelles (99.4 nm) and cyclodextrins solution. The optimized hydrogels exhibited shear-thinning and sustained release properties. The hydrogels exhibited higher transcorneal permeability coefficient (Papp, 1.84 folds) than that of drug solutions. Moreover, animal study indicated that the hydrogels significantly increased the precorneal retention (AUC, 21.2 folds) and intraocular bioavailability of flurbiprofen (AUCAqueous humor, 17.8 folds) in comparison with drug solutions. Importantly, the hydrogels obviously boosted anti-inflammatory efficacy in rabbit model of endotoxin-induced uveitis at a reduced administration frequency. Additionally, the safety of hydrogels was confirmed by cytotoxicity and ocular irritation studies. In all, the present study demonstrates a friendly non-invasive strategy based on γ-CD-based polypseudorotaxane hydrogels for ocular drug delivery.Programmable asymmetric hydrogels with tunable structure/shape or physical/chemical properties in response to external stimuli show particular significance in smart systems, but there is lack of simple, rapid, and cheap strategy to design such hydrogel systems. Herein, we report a one-step electrodeposition method to construct chitosan asymmetric hydrogels with tunable thickness and pore size that can be conveniently modulated by the process parameters. Our approach greatly simplifies the process of hydrogel preparation with complex shapes and asymmetric structure organization. The formation mechanism of asymmetric structure has been proposed, based on gelation behavior and entanglement of chitosan chains in the hydrogel-solution system under the electric field. By changing the shape of the electrodes, hydrogels with the morphology of strip, tube, flower, etc. can be obtained precisely and conveniently. They can perform programmable 2D to 3D smart dynamic deformation under pH and metal ions stimulation, indicating the broad application potential in soft robot and biosensor areas.