Wonghowe8456

Z Iurium Wiki

We provide a unified semiclassical theory for thermoelectric responses of any observable represented by an operator θ[over ^] that is well defined in periodic crystals. The Einstein and Mott relations are established generally in the presence of Berry phase effects for various physical realizations of θ[over ^] in electronic systems, including the familiar case of the electric current as well as the currently controversial cases of the spin polarization and spin current. The magnetization current, which has been proven indispensable in the thermoelectric response of electric current, is generalized to the cases of various θ[over ^]. In our theory the dipole density of a physical quantity emerges and plays a vital role, which contains not only the statistical sum of the dipole moment of θ[over ^] but also a Berry phase correction.Recently realized higher order topological insulators have taken a surge of interest among the theoretical and experimental condensed matter community. The two-dimensional second order topological insulators give rise to zero-dimensional localized corner modes that reside within the band gap of the system along with edge modes that inhabit a band edge next to bulk modes. Thanks to the topological nature, information can be trapped at the corners of these systems, which will be unhampered even in the presence of disorder. Being localized at the corners, the exchange of information among the corner states is an issue. Here we show that the nonlinearity in an exciton polariton system can allow the coupling between the different corners through the edge states based on optical parametric scattering, realizing a system of multiple connectible topological modes.In 1935, Einstein, Podolsky, and Rosen (EPR) formulated an apparent paradox of quantum theory [Phys. Rev. 47, 777 (1935)PHRVAO0031-899X10.1103/PhysRev.47.777]. They considered two quantum systems that were initially allowed to interact and were then later separated. A measurement of a physical observable performed on one system then had to have an immediate effect on the conjugate observable in the other system-even if the systems were causally disconnected. The authors viewed this as a clear indication of the inconsistency of quantum mechanics. In the parton model of the nucleon formulated by Bjorken, Feynman, and Gribov, the partons (quarks and gluons) are viewed by an external hard probe as independent. The standard argument is that, inside the nucleon boosted to an infinite-momentum frame, the parton probed by a virtual photon with virtuality Q is causally disconnected from the rest of the nucleon during the hard interaction. Yet, the parton and the rest of the nucleon have to form a color-singlet state due to color confinement and so have to be in strongly correlated quantum states-we thus encounter the EPR paradox at the subnucleonic scale. In this Letter, we propose a resolution of this paradox based on the quantum entanglement of partons. We devise an experimental test of entanglement and carry it out using data on proton-proton collisions from the Large Hadron Collider. Our results provide a strong direct indication of quantum entanglement at subnucleonic scales.The first-order Fermi acceleration of electrons requires an injection of electrons into a mildly relativistic energy range. However, the mechanism of injection has remained a puzzle both in theory and observation. We present direct evidence for a novel stochastic shock drift acceleration theory for the injection obtained with Magnetospheric Multiscale observations at the Earth's bow shock. The theoretical model can explain electron acceleration to mildly relativistic energies at high-speed astrophysical shocks, which may provide a solution to the long-standing issue of electron injection.Global transport and communication networks enable information, ideas, and infectious diseases to now spread at speeds far beyond what has historically been possible. To effectively monitor, design, or intervene in such epidemic-like processes, there is a need to predict the speed of a particular contagion in a particular network, and to distinguish between nodes that are more likely to become infected sooner or later during an outbreak. Here, we study these quantities using a message-passing approach to derive simple and effective predictions that are validated against epidemic simulations on a variety of real-world networks with good agreement. In addition to individualized predictions for different nodes, we find an overall sudden transition from low density to almost full network saturation as the contagion progresses in time. Our theory is developed and explained in the setting of simple contagions on treelike networks, but we are also able to show how the method extends remarkably well to complex contagions and highly clustered networks.The propagation of a crack front in disordered materials is jerky and characterized by bursts of activity, called avalanches. These phenomena are the manifestation of an out-of-equilibrium phase transition originated by the disorder. As a result avalanches display universal scalings which are, however, difficult to characterize in experiments at a finite drive. Here, we show that the correlation functions of the velocity field along the front allow us to extract the critical exponents of the transition and to identify the universality class of the system. We employ these correlations to characterize the universal behavior of the transition in simulations and in an experiment of crack propagation. This analysis is robust, efficient, and can be extended to all systems displaying avalanche dynamics.We study fluctuations of interfaces in the Kardar-Parisi-Zhang (KPZ) universality class with curved initial conditions. By simulations of a cluster growth model and experiments with liquid-crystal turbulence, we determine the universal scaling functions that describe the height distribution and the spatial correlation of the interfaces growing outward from a ring. The scaling functions, controlled by a single dimensionless time parameter, show crossover from the statistical properties of the flat interfaces to those of the circular interfaces. Moreover, employing the KPZ variational formula to describe the case of the ring initial condition, we find that the formula, which we numerically evaluate, reproduces the numerical and experimental results precisely without adjustable parameters. This demonstrates that precise numerical evaluation of the variational formula is possible at all, and underlines the practical importance of the formula, which is able to predict the one-point distribution of KPZ interfaces for general initial conditions.Quantum teleportation is a fundamental building block of quantum communications and quantum computations, transferring quantum states between distant physical entities. In the context of quantum secret sharing, the teleportation of quantum information shared by multiple parties without concentrating the information at any place is essential, and this cannot be realized by any previous scheme. We propose and experimentally demonstrate a novel teleportation protocol that enables one to perform this task. It is jointly performed by distributed participants, while none of them can fully access the information. Our scheme can be extended to arbitrary numbers of senders and receivers and to fault-tolerant quantum networks by incorporating error-correction codes.In simple inflationary cosmological scenarios, the near-exponential growth can be followed by a long period in which the Universe is dominated by the oscillating inflaton condensate. The condensate is initially almost homogeneous, but perturbations grow gravitationally, eventually fragmenting the condensate if it is not disrupted more quickly by resonance or prompt reheating. We show that the gravitational fragmentation of the condensate is well-described by the Schrödinger-Poisson equations and use numerical solutions to show that large overdensities form quickly after the onset of nonlinearity. This is the first exploration of this phase of nonlinear dynamics in the very early Universe, which can affect the detailed form of the inflationary power spectrum and the dark matter fraction when the dark sector is directly coupled to the inflaton.The rotational diffusive motion of a self-propelled, attractive spherical colloid immersed in a solution of self-avoiding polymers is studied by mesoscale hydrodynamic simulations. A drastic enhancement of the rotational diffusion by more than an order of magnitude in the presence of activity is obtained. The amplification is a consequence of two effects, a decrease of the amount of adsorbed polymers by active motion and an asymmetric encounter with polymers on the squirmer surface, which yields an additional torque and random noise for the rotational motion. Our simulations suggest a way to control the rotational dynamics of squirmer-type microswimmers by the degree of polymer adsorption and system heterogeneity.We report on the realization of long-range Ising interactions in a cold gas of cesium atoms by Rydberg dressing. The interactions are enhanced by coupling to Rydberg states in the vicinity of a Förster resonance. We characterize the interactions by measuring the mean-field shift of the clock transition via Ramsey spectroscopy, observing one-axis twisting dynamics. We furthermore emulate a transverse-field Ising model by periodic application of a microwave field and detect dynamical signatures of the paramagnetic-ferromagnetic phase transition. Our results highlight the power of optical addressing for achieving local and dynamical control of interactions, enabling prospects ranging from investigating Floquet quantum criticality to producing tunable-range spin squeezing.Here we present a new paradigm of free-electron-bound-electron resonant interaction. This concept is based on a recent demonstration of the optical frequency modulation of the free-electron quantum electron wave function (QEW) by an ultrafast laser beam. We assert that pulses of such QEWs correlated in their modulation phase, interact resonantly with two-level systems, inducing resonant quantum transitions when the transition energy ΔE=ℏω_21 matches a harmonic of the modulation frequency ω_21=nω_b. Employing this scheme for resonant cathodoluminescence and resonant EELS combines the atomic level spatial resolution of electron microscopy with the high spectral resolution of lasers.Photon statistics divides light sources into three different categories, characterized by bunched, antibunched, or uncorrelated photon arrival times. Single atoms, ions, molecules, or solid state emitters display antibunching of photons, while classical thermal sources exhibit photon bunching. Here we demonstrate a light source in free space, where the photon statistics depends on the direction of observation, undergoing a continuous crossover between photon bunching and antibunching. We employ two trapped ions, observe their fluorescence under continuous laser light excitation, and record spatially resolved the autocorrelation function g^(2)(τ) with a movable Hanbury Brown and Twiss detector. Varying the detector position we find a minimum value for antibunching, g^(2)(0)=0.60(5) and a maximum of g^(2)(0)=1.46(8) for bunching, demonstrating that this source radiates fundamentally different types of light alike. The observed variation of the autocorrelation function is understood in the Dicke model from which the observed maximum and minimum values can be modeled, taking independently measured experimental parameters into account.

Autoři článku: Wonghowe8456 (Cheng Jamison)