Wolfsmidt4464

Z Iurium Wiki

Chain elongation is a growth-dependent anaerobic metabolism that combines acetate and ethanol into butyrate, hexanoate, and octanoate. While the model microorganism for chain elongation, Clostridium kluyveri, was isolated from a saturated soil sample in the 1940s, chain elongation has remained unexplored in soil environments. During soil fermentative events, simple carboxylates and alcohols can transiently accumulate up to low mM concentrations, suggesting in situ possibility of microbial chain elongation. Here, we examined the occurrence and microbial ecology of chain elongation in four soil types in microcosms and enrichments amended with chain elongation substrates. All soils showed evidence of chain elongation activity with several days of incubation at high (100 mM) and environmentally relevant (2.5 mM) concentrations of acetate and ethanol. Three soils showed substantial activity in soil microcosms with high substrate concentrations, converting 58% or more of the added carbon as acetate and ethanol to butyrate, butanol, and hexanoate. Semi-batch enrichment yielded hexanoate and octanoate as the most elongated products and microbial communities predominated by C. kluyveri and other Firmicutes genera not known to undergo chain elongation. Collectively, these results strongly suggest a niche for chain elongation in anaerobic soils that should not be overlooked in soil microbial ecology studies.Horizontal gene transfer (HGT) is thought to be an important driving force for microbial evolution and niche adaptation and has been show in vitro to occur frequently in biofilm communities. However, the extent to which HGT takes place and what functions are being transferred in more complex and natural biofilm systems remains largely unknown. To address this issue, we investigated here HGT and enrichment of gene functions in the biofilm community of the common kelp (macroalgae) Ecklonia radiata in comparison to microbial communities in the surrounding seawater. We found that HGTs in the macroalgal biofilms were dominated by transfers between bacterial members of the same class or order and frequently involved genes for nutrient transport, sugar and phlorotannin degradation as well as stress responses, all functions that would be considered beneficial for bacteria living in this particular niche. HGT did not appear to be driven by mobile gene elements, indicating rather an involvement of unspecific DNA uptake (e.g. natural transformation). There was also a low overlap between the gene functions subject to HGT and those enriched in the biofilm community in comparison to planktonic community members. This indicates that much of the functionality required for bacteria to live in an E. radiata biofilm might be derived from vertical or environmental transmissions of symbionts. This study enhances our understanding of the relative role of evolutionary and ecological processes in driving community assembly and genomic diversity of biofilm communities.B cell acute lymphoblastic leukaemia (B-ALL) is the most common form of childhood cancer. Triptolide manufacturer Although treatment has advanced remarkably in the past 50 years, it still fails in ~20% of patients. Recent studies revealed that more than 5% of healthy newborns carry preleukaemic clones that originate in utero, but only a small percentage of these carriers will progress to overt B-ALL. The drivers of progression are unclear, but B-ALL incidence seems to be increasing in parallel with the adoption of modern lifestyles. Emerging evidence shows that a major driver for the conversion from the preleukaemic state to the B-ALL state is exposure to immune stressors, such as infection. Here, we discuss our current understanding of the environmental triggers and genetic predispositions that may lead to B-ALL, highlighting lessons from epidemiology, the clinic and animal models, and identifying priority areas for future research.Previous cross-sectional work has demonstrated resting-state connectivity abnormalities in children and adolescents with attention/deficit hyperactivity disorder (ADHD) relative to typically developing controls. However, it is unclear to what extent these neural abnormalities confer risk for later symptoms of the disorder, or represent the downstream effects of symptoms on functional connectivity. Here, we studied 167 children and adolescents (mean age at baseline = 10.74 years (SD = 2.54); mean age at follow-up = 13.3 years (SD = 2.48); 56 females) with varying levels of ADHD symptoms, all of whom underwent resting-state functional magnetic resonance imaging and ADHD symptom assessments on two occasions during development. Resting-state functional connectivity was quantified using eigenvector centrality mapping. Using voxelwise cross-lag modeling, we found that less connectivity at baseline within right inferior frontal gyrus was associated with more follow-up symptoms of inattention (significant at an uncorrected cluster-forming threshold of p ≤ 0.001 and a cluster-level familywise error corrected threshold of p  less then  0.05). Findings suggest that previously reported cross-sectional abnormalities in functional connectivity within inferior frontal gyrus in patients with ADHD may represent a longitudinal risk factor for the disorder, in line with efforts to target this region with novel therapeutic methods.Palatable food can promote overfeeding beyond homeostatic requirements, thereby constituting a major risk to obesity. Here, the lack of cannabinoid type 1 receptor (CB1) in dorsal telencephalic glutamatergic neurons (Glu-CB1-KO) abrogated the overconsumption of palatable food and the development of obesity. On low-fat diet, no genotype differences were observed. However, under palatable food conditions, Glu-CB1-KO mice showed decreased body weight and food intake. Notably, Glu-CB1-KO mice were protected from alterations in the reward system after high-fat diet feeding. Interestingly, obese wild-type mice showed a superior olfactory detection as compared to mutant mice, suggesting a link between overconsumption of palatable food and olfactory function. Reconstitution of CB1 expression in olfactory cortex in high-fat diet-fed Glu-CB1-KO mice using viral gene delivery partially reversed the lean phenotype concomitantly with improved odor perception. These findings indicate that CB1 in cortical glutamatergic neurons regulates hedonic feeding, whereby a critical role of the olfactory cortex was uncovered as an underlying mechanism.

Autoři článku: Wolfsmidt4464 (Chapman Sinclair)