Wolfebradley7547
Serum amyloid P component (SAP, also known as Pentraxin 2; APCS gene) is a component of the humoral arm of innate immunity involved in resistance to bacterial infection and regulation of tissue remodeling. Here we investigate the role of SAP in antifungal resistance. Apcs-/- mice show enhanced susceptibility to A. fumigatus infection. Murine and human SAP bound conidia, activate the complement cascade and enhance phagocytosis by neutrophils. Apcs-/- mice are defective in vivo in terms of recruitment of neutrophils and phagocytosis in the lungs. Opsonic activity of SAP is dependent on the classical pathway of complement activation. In immunosuppressed mice, SAP administration protects hosts against A. fumigatus infection and death. In the context of a study of hematopoietic stem-cell transplantation, genetic variation in the human APCS gene is associated with susceptibility to invasive pulmonary aspergillosis. Thus, SAP is a fluid phase pattern recognition molecule essential for resistance against A. fumigatus.Primary small cell carcinoma of the esophagus (PSCCE) is a lethal neuroendocrine carcinoma. Previous studies proposed a genetic similarity between PSCCE and esophageal squamous cell carcinoma (ESCC) but provided little evidence for differences in clinical course and neuroendocrine differentiation. We perform whole-exome sequencing, RNA sequencing and immunohistochemistry profiling on 46 PSCCE cases. Integrated analyses enable the discovery of multiple mechanisms of RB1 disruption in 98% (45/46) of cases. The transcriptomic landscape of PSCCE closely resembles small cell lung cancer (SCLC) but differs from ESCC or esophageal adenocarcinoma (EAC). Distinct gene expression patterns regulated by ASCL1 and NEUROD1 define two molecular subtypes, PSCCE-A and PSCCE-N, which are highly similar to SCLC subtypes. A T cell excluded phenotype is widely observed in PSCCE. In conclusion, PSCCE has genomic alterations, transcriptome features and molecular subtyping highly similar to SCLC but distinct from ESCC or EAC. These observations are relevant to oncogenesis mechanisms and therapeutic vulnerability.Contemporary asymmetric catalysis faces huge challenges when prochiral substrates bear electronically and sterically unbiased substituents and when substrates show low reactivities. One of the inherent limitations of chiral catalysts and ligands is their incapability in recognizing prochiral substrates bearing similar groups. This has rendered many enantiopure substances bearing several similar substituents inaccessible. Here we report the rationale, scope, and applications of the strategy of kinetic resolution of auxiliary adjacent alcohols (KRA*) that can be used to solve the above troubles. Using this method, a large variety of optically enriched tertiary alcohols, epoxides, esters, ketones, hydroxy ketones, epoxy ketones, β-ketoesters, and tetrasubstituted methane analogs with two, three, and four spatially and electronically similar groups can be readily obtained (totally 96 examples). At the current stage, the strategy serves as the optimal solution that can complement the inability caused by direct asymmetric catalysis in getting chiral molecules with challenging fully substituted stereocenters.De novo lipogenesis (DNL) is disrupted in a wide range of human disease. Thus, quantification of DNL may provide insight into mechanisms and guide interventions if it can be performed rapidly and noninvasively. DNL flux is commonly measured by 2H incorporation into fatty acids following deuterated water (2H2O) administration. However, the sensitivity of this approach is limited by the natural abundance of 13C, which masks detection of 2H by mass spectrometry. Here we report that high-resolution Orbitrap gas-chromatography mass-spectrometry resolves 2H and 13C fatty acid mass isotopomers, allowing DNL to be quantified using lower 2H2O doses and shorter experimental periods than previously possible. Serial measurements over 24-hrs in mice detects the nocturnal activation of DNL and matches a 3H-water method in mice with genetic activation of DNL. Most importantly, DNL is detected in overnight-fasted humans in less than an hour and is responsive to feeding during a 4-h study. Thus, 2H specific MS provides the ability to study DNL in settings that are currently impractical.Single photon emitters (SPEs) in low-dimensional layered materials have recently gained a large interest owing to the auspicious perspectives of integration and extreme miniaturization offered by this class of materials. However, accurate control of both the spatial location and the emission wavelength of the quantum emitters is essentially lacking to date, thus hindering further technological steps towards scalable quantum photonic devices. Here, we evidence SPEs in high purity synthetic hexagonal boron nitride (hBN) that can be activated by an electron beam at chosen locations. SPE ensembles are generated with a spatial accuracy better than the cubed emission wavelength, thus opening the way to integration in optical microstructures. Stable and bright single photon emission is subsequently observed in the visible range up to room temperature upon non-resonant laser excitation. Moreover, the low-temperature emission wavelength is reproducible, with an ensemble distribution of width 3 meV, a statistical dispersion that is more than one order of magnitude lower than the narrowest wavelength spreads obtained in epitaxial hBN samples. Our findings constitute an essential step towards the realization of top-down integrated devices based on identical quantum emitters in 2D materials.Despite the growing interest in predicting global and regional trends in vegetation productivity in response to a changing climate, changes in water constraint on vegetation productivity (i.e., water limitations on vegetation growth) remain poorly understood. Here we conduct a comprehensive evaluation of changes in water constraint on vegetation growth in the extratropical Northern Hemisphere between 1982 and 2015. We document a significant increase in vegetation water constraint over this period. Remarkably divergent trends were found with vegetation water deficit areas significantly expanding, and water surplus areas significantly shrinking. The increase in water constraints associated with water deficit was also consistent with a decreasing response time to water scarcity, suggesting a stronger susceptibility of vegetation to drought. find more We also observed shortened water surplus period for water surplus areas, suggesting a shortened exposure to water surplus associated with humid conditions. These observed changes were found to be attributable to trends in temperature, solar radiation, precipitation, and atmospheric CO2.