Wintherbain6726
The aim of this study is to clarify the effect of doped metal type on CO2 reduction characteristics of TiO2 with NH3 and H2O. Cu and Pd have been selected as dopants for TiO2. In addition, the impact of molar ratio of CO2 to reductants NH3 and H2O has been investigated. A TiO2 photocatalyst was prepared by a sol-gel and dip-coating process, and then doped with Cu or Pd fine particles by using the pulse arc plasma gun method. The prepared Cu/TiO2 film and Pd/TiO2 film were characterized by SEM, EPMA, TEM, STEM, EDX, EDS and EELS. This study also has investigated the performance of CO2 reduction under the illumination condition of Xe lamp with or without ultraviolet (UV) light. As a result, it is revealed that the CO2 reduction performance with Cu/TiO2 under the illumination condition of Xe lamp with UV light is the highest when the molar ratio of CO2/NH3/H2O = 111 while that without UV light is the highest when the molar ratio of CO2/NH3/H2O = 10.50.5. It is revealed that the CO2 reduction performance of Pd/TiO2 is the highest for the molar ratio of CO2/NH3/H2O = 111 no matter the used Xe lamp was with or without UV light. The molar quantity of CO per unit weight of photocatalyst for Cu/TiO2 produced under the illumination condition of Xe lamp with UV light was 10.2 μmol/g, while that for Pd/TiO2 was 5.5 μmol/g. Meanwhile, the molar quantity of CO per unit weight of photocatalyst for Cu/TiO2 produced under the illumination condition of Xe lamp without UV light was 2.5 μmol/g, while that for Pd/TiO2 was 3.5 μmol/g. This study has concluded that Cu/TiO2 is superior to Pd/TiO2 from the viewpoint of the molar quantity of CO per unit weight of photocatalyst as well as the quantum efficiency.The need to recycle and develop nanomaterials from waste, and use them in environmental applications has become increasingly imperative in recent decades. A new method to convert the mill scale, a waste of the steel industry that contains large quantity of iron and low impurities into a nanoadsorbent that has the necessary properties to be used for water purification is presented. The mill scale waste was used as raw material for iron oxide nanopowder. A thorough characterization was performed in each stage of the conversion process from the mill scale powder to magnetic nanopowder including XRD (X-ray diffraction), SEM (scanning electron microscopy), TEM (transmission electron microscopy), BET (Brunauer, Emmett and Teller) and magnetization properties. Iron oxide nanoparticles were approximately 5-6 nm with high specific surface area and good magnetic properties. These are the necessary properties that a magnetic nanopowder must have in order to be used as nanoadsorbents in the heavy metal removal from waters. The iron oxide nanoparticles were evaluated as adsorbents for the removal of Cu, Cd and Ni ions.Pipeline magnetic flux leakage (MFL) internal detection technology is the most widely used and effective method in the field of long-distance oil and gas pipeline online detection. With the improvement of data quantization precision, the influence of stress on MFL signal has been paid more and more attention. In this paper, the relationship between stress and saturation magnetization is introduced based on J-A theory. The analytical model of MFL detection signal for pipeline composite defects is established. The MFL signal characteristics of composite defects are quantitatively calculated. The effect of stress on MFL signal is studied. The theoretical analysis is verified by experimental data and excavation results. The researches show that the saturation magnetization of ferromagnets decreases exponentially with the increase of stress in strong magnetic field. The MFL signal of composite defect is weaker than that of volumetric defects of the same dimension. The axial amplitude and radial peak-to-peak value of MFL signal decrease with the increase of stress around the defect. The axial amplitude and radial peak-to-peak value of MFL signal increase non-linearly with the increase of width and depth of defects. When using MFL signal to judge the defect depth, it is necessary to make clear whether there is stress concentration phenomenon around the defect because the stress will lead to underestimation of the defect depth.Periods of muscle disuse promote marked mitochondrial alterations that contribute to the impaired metabolic health and degree of atrophy in the muscle. Thus, understanding the molecular underpinnings of muscle mitochondrial decline with prolonged inactivity is of considerable interest. There are translational applications to patients subjected to limb immobilization following injury, illness-induced bed rest, neuropathies, and even microgravity. Studies in these patients, as well as on various pre-clinical rodent models have elucidated the pathways involved in mitochondrial quality control, such as mitochondrial biogenesis, mitophagy, fission and fusion, and the corresponding mitochondrial derangements that underlie the muscle atrophy that ensues from inactivity. Defective organelles display altered respiratory function concurrent with increased accumulation of reactive oxygen species, which exacerbate myofiber atrophy via degradative pathways. The preservation of muscle quality and function is critical for maintaining mobility throughout the lifespan, and for the prevention of inactivity-related diseases. Exercise training is effective in preserving muscle mass by promoting favourable mitochondrial adaptations that offset the mitochondrial dysfunction, which contributes to the declines in muscle and whole-body metabolic health. Selleckchem Rapamycin This highlights the need for further investigation of the mechanisms in which mitochondria contribute to disuse-induced atrophy, as well as the specific molecular targets that can be exploited therapeutically.The paper concerns multicast packet traffic throughput maximization in multi-hop wireless sensor networks with time division multiple access to radio channel. We assume that the modulation and coding schemes (MCSs) that are used by the (broadcasting) nodes as well as the transmission power of the nodes are adjustable. This leads to the main research question studied in this paper to what extent traffic throughput can be increased by proper MCSs assignment and transmission power control (TPC) at the nodes? To answer this question, we introduce mixed-integer programming formulations for joint MCSs assignment and TPC optimization, together with a solution algorithm. Finally, we present a numerical study illustrating the considerations of the paper. The numerical results show a significant gain being achieved by proper MCSs assignment, which is further increased by applying TPC.