Winklerkern8669

Z Iurium Wiki

Blackleg, caused by Leptosphaeria maculans, is a major disease of canola in Canada, Australia, and Europe. For effective deployment of resistant varieties and disease management, it is crucial to understand the population structure of L. maculans. In this study, we analyze L. maculans isolates from commercial fields in western Canada from 2014 to 2016 for the presence and frequency of avirulence (Avr) genes. A total of 1, 584 isolates was examined for the presence of Avr genes AvrLm1, AvrLm2, AvrLm3, AvrLm4, AvrLm6, AvrLm7, AvrLm9, AvrLepR1, AvrLepR2, and AvrLmS using a set of differential host genotypes carrying known resistance genes and a PCR assay. Several Avr genes showed a higher frequency in the pathogen population, such as AvrLm6 and AvrLm7, which were present in >90% of isolates; while AvrLm3, AvrLm9 and AvrLepR2 showed frequencies of less then 10%. A total of 189 races (different combinations of Avr genes) were detected, with Avr-2-4-6-7-S, Avr-1-4-6-7 and Avr-2-4-6-7 as the three predominant races. When the effect of crop rotation was assessed, only a three-year rotation showed a significantly higher frequency of AvrLm2, relative to shorter rotations. This study provides the information for producers to select effective canola varieties for blackleg management, and for breeders to deploy new R genes in disease resistance breeding in the western Canada region.With the rapid increase in the frequency of azole-resistant species, combination therapy appears to be a promising tool to augment the antifungal activity of azole drugs against resistant Candida species. Here, we report the effect of aprepitant, an antiemetic agent, on the antifungal activities of azole drugs against the multidrug-resistant Candida auris. Aprepitant reduced the minimum inhibitory concentration (MIC) of itraconazole in vitro, by up to eight-folds. Additionally, the aprepitant/itraconazole combination interfered significantly with the biofilm-forming ability of C. auris by 95 ± 0.13%, and significantly disrupted mature biofilms by 52 ± 0.83%, relative to the untreated control. In a Caenorhabditis elegans infection model, the aprepitant/itraconazole combination significantly prolonged the survival of infected nematodes by ~90% (five days post-infection) and reduced the fungal burden by ~92% relative to the untreated control. Further, this novel drug combination displayed broad-spectrum synergistic interactions against other medically important Candida species such as C. albicans, C. krusei, C. tropicalis, and C. parapsilosis (ƩFICI ranged from 0.08 to 0.31). Comparative transcriptomic profiling and mechanistic studies indicated aprepitant/itraconazole interferes significantly with metal ion homeostasis and compromises the ROS detoxification ability of C. auris. This study presents aprepitant as a novel, potent, and broad-spectrum azole chemosensitizing agent that warrants further investigation.Carboxymethyl cellulose granules (CMC-G) and kappa-carrageenan/polyethylene oxide/polyethylene glycol dressing (KPP-D) hemostatic agents, developed through radiation-induced crosslinking and sterilization, were tested in Sprague-Dawley rats using three bleeding models (a) deep wound with the puncture of femoral artery; (b) aortic puncture; and (c) partial nephrectomy. Dressing and granules were applied in the animals without sustained compression and monitored for a period of 7 or 14 days. Comparisons were made against the commercial chitosan-based agent, Celox (CLX). Primary outcomes observed were bleeding time, the incidence of re-bleeding, animal survival, as well as gross and microscopic changes. The KPP-D group showed the shortest bleeding time for all bleeding models (a. 2.75 ± 0.64, b. 1.63 ± 0.54, c. 2.05 ± 0.62), significantly faster than all the other treatment groups. KPP-D also registered the highest survival rate of 100% with no display of gross abnormalities. CMC-G showed comparable bleeding time with CLX products but had a better survival rate at 98% compared to 96%. The incidence of re-bleeding was greater in CLX treated groups as well as more occurrence of granular adhesions that impacted mortality outcomes. Findings indicate the efficacy of KPP-D in the treatment of severe hemorrhage due to traumatic injury and intraoperative cases, while CMC-G was more suited for external trauma. Complications arising from inflammation, granules deposition, and adhesions emphasize stringent handling and removal of granular hemostat as a critical consideration in hemostat development and testing.Blast disease is a notorious fungal disease leading to dramatic yield losses on major food crops such as rice and wheat. The causal agent, Pyricularia oryzae, encompasses different lineages, each having a different host range. Host shifts are suspected to have occurred in this species from Setaria spp. to rice and from Lolium spp. to wheat. The emergence of blast disease on maize in Iran was observed for the first time in the north of the country in 2012. We later identified blast disease in two additional regions of Iran Gilan in 2013 and Golestan in 2016. Epidemics on the weed barnyard grass (Echinochloa spp.) were also observed in the same maize fields. Here, we showed that P. oryzae is the causal agent of this disease on both hosts. Pathogenicity assays in the greenhouse revealed that strains from maize can infect barnyard grass and conversely. However, genotyping with simple sequence repeat markers and comparative genomics showed that strains causing field epidemics on maize and on barnyard grass are different, although they belong to the same previously undescribed clade of P. oryzae. Phylogenetic analyses including these strains and a maize strain collected in Gabon in 1985 revealed two independent host-range expansion events from barnyard grass to maize. Comparative genomics between maize and barnyard grass strains revealed the presence or absence of five candidate genes associated with host specificity on maize, with the deletion of a small genomic region possibly responsible for adaptation to maize. This recent emergence of P. oryzae on maize provides a case study to understand host range expansion. Epidemics on maize raise concerns about potential yield losses on this crop in Iran and potential geographic expansion of the disease.Sorghum (Sorghum bicolor) is the fifth most cultivated cereal crop in the world, traditionally providing food, feed, and fodder, but more recently also fermentable sugars for the production of renewable fuels and chemicals. The hemibiotrophic fungal pathogen Colletotrichum sublineola, the causal agent of anthracnose disease in sorghum, is prevalent in the warm and humid climates where much of the sorghum is cultivated and poses a serious threat to sorghum production. The use of anthracnose-resistant sorghum germplasm is the most environmentally and economically sustainable way to protect sorghum against this pathogen. Even though multiple anthracnose resistance loci have been mapped in diverse sorghum germplasm in recent years, the diversity in C. sublineola pathotypes at the local and regional levels means that these resistance genes are not equally effective in different areas of cultivation. This review summarizes the genetic and cytological data underlying sorghum's defense response and describes recent developments that will enable a better understanding of the interactions between sorghum and C. sublineola at the molecular level. This includes releases of the sorghum genome and the draft genome of C. sublineola, the use of next-generation sequencing technologies to identify gene expression networks activated in response to infection, and improvements in methodologies to validate resistance genes, notably virus-induced and transgenic gene silencing approaches.Soybean cyst nematode (SCN) is one of the most important diseases in soybean. Currently, the main management strategy relies on planting resistant cultivars. However, the overuse of a single resistance source has led to the selection of virulent SCN populations, although the mechanisms by which the nematode overcomes the resistance genes remain unknown. In this study, we used a nematode-adapted single-cell RNA-seq approach to identify SCN genes potentially involved in resistance breakdown in Peking and PI 88788 parental soybean lines. We established for the first time the full transcriptome of single SCN individuals allowing us to identify a list of putative virulence genes against both major SCN resistance sources. Our analysis identified 48 differentially expressed putative effectors (secreted proteins required for infection) alongside 40 effectors showing evidence of novel structural variants, and 11 effector genes containing phenotype-specific sequence polymorphisms. Additionally, a differential expression analysis revealed an interesting phenomenon of coexpressed gene regions with some containing putative effectors. The selection of virulent SCN individuals on Peking resulted in a profoundly altered transcriptome, especially for genes known to be involved in parasitism. Several sequence polymorphisms were also specific to these virulent nematodes and could potentially play a role in the acquisition of nematode virulence. On the other hand, the transcriptome of virulent individuals on PI 88788 was very similar to avirulent ones with the exception of a few genes, which suggest a distinct virulence strategy to Peking.The pig is a powerful model for intestinal barrier studies, and it is important to carefully plan animal care and handling for optimal study design as psychological and physiological stressors significantly impact intestinal mucosal barrier function. Here, we report the effects of a period of environmental acclimation versus acute transport stress on mucosal barrier repair after intestinal ischemic injury. Jejunal ischemia was induced in young pigs which had been allowed to acclimate to a biomedical research housing environment or had been transported immediately prior to experimental injury (non-acclimated). Mucosa was then incubated ex vivo on Ussing chambers. In uninjured mucosa, there was no difference in transepithelial electrical resistance (TEER) or epithelial integrity between groups. However, acclimated pigs had increased macromolecular flux as compared to non-acclimated pigs during the first hour of ex vivo incubation. Ischemia induced greater epithelial loss in non-acclimated pigs as compared to acclimated pigs, yet this group achieved greater wound healing during recovery. Non-acclimated pigs had more robust TEER recovery ex vivo following injury versus acclimated pigs. The expression pattern of the tight junction protein claudin-4 was disrupted in acclimated pigs following recovery but showed enhanced localization to the apical membrane in non-acclimated pigs following recovery. Acute transport stress increases mucosal susceptibility to epithelial loss but also primes the tissue for a more robust barrier repair response. Alternatively, environmental acclimation increases leak pathway and diminishes barrier repair responses after ischemic injury.Structural components of second messenger signaling (nucleotides and associated enzyme systems) within plant and animal cells have more in common than the hormones that initiate metabolic and functional changes. Neurotransmitters and hormones of mammalian pharmacologic classes relate to purine nucleotides in respect of chemical structure and the molecular changes they initiate. This study compares the molecular structures of purine nucleotides with compounds from the abscisic acid, auxin, brassinosteroid, cytokinin, gibberellin, and jasmonate classes by means of a computational program. The results illustrate how phytohomones relate to each other through the structures of nucleotides and cyclic nucleotides. Molecular similarity within the phytohormone structures relates to synergism, antagonism and the modulation of nucleotide function that regulates germination and plant development. As with the molecular evolution of mammalian hormones, cell signaling and cross-talk within the phytohormone classes is purine nucleotide centered.

Autoři článku: Winklerkern8669 (Rossen Poole)