Willoughbyfischer8316
Recent studies have shown that high-risk patients with type 2 diabetes mellitus (T2DM) treated with sodium glucose cotransporter 2 (SGLT2) inhibitors have improved cardiovascular (CV) outcomes. In an exploratory analysis of data from the EMPA-REG study, elevations in haematocrit were shown to be strongly associated with beneficial CV effects. As insulin treatment has been shown to be antinatriuretic, with an associated increase in extracellular fluid volume, it is important to confirm whether haematocrit increase is maintained with concomitant insulin therapy. Here, we investigate the effect of the SGLT2 inhibitor dapagliflozin on haematocrit, red blood cell (RBC) counts and reticulocyte levels in high-risk patients with T2DM receiving insulin. A 24-week, double-blinded, randomised, placebo-controlled trial (ClinicalTrials.gov NCT00673231) was reported previously with extension periods of 24 and 56 weeks (total of 104 weeks). Patients receiving insulin were randomised 1111 to placebo or dapagliflozin at 2.5, 5 or 10 mg. Haematocrit, RBC and reticulocyte measurements were conducted during this study, and a longitudinal repeated-measures analysis was performed here to examine change from baseline during treatment. Dapagliflozin treatment in combination with insulin resulted in a dose-dependent increase in haematocrit levels and RBCs over a 104 week period. There was a short-term increase in reticulocyte levels at the start of treatment, which dropped to below baseline after 8 weeks. SGLT2 inhibition with dapagliflozin leads to a sustained increase in haematocrit in patients receiving chronic insulin treatment.The CRISPR/Cas9 system is a versatile tool for functional genomics and forward genetic screens in mammalian cells. However, it has been challenging to deliver the CRISPR components to sensitive cell types, such as primary human hematopoietic stem and progenitor cells (HSPCs), partly due to lentiviral transduction of Cas9 being extremely inefficient in these cells. Here, to overcome these hurdles, we developed a combinatorial system using stable lentiviral delivery of single guide RNA (sgRNA) followed by transient transfection of Cas9 mRNA by electroporation in human cord blood-derived CD34+ HSPCs. We further applied an optimized sgRNA structure, that significantly improved editing efficiency in this context, and we obtained knockout levels reaching 90% for the cell surface proteins CD45 and CD44 in sgRNA transduced HSPCs. Our combinatorial CRISPR/Cas9 delivery approach had no negative influence on CD34 expression or colony forming capacity in vitro compared to non-treated HSPCs. Furthermore, gene edited HSPCs showed intact in vivo reconstitution capacity following transplantation to immunodeficient mice. Taken together, we developed a paradigm for combinatorial CRISPR/Cas9 delivery that enables efficient and traceable gene editing in primary human HSPCs, and is compatible with high functionality both in vitro and in vivo.Attention-deficit/hyperactivity disorder (ADHD) has been associated with increased risk for physical comorbidity. This study used a twin cohort to investigate the association between physical diseases and phenotypic variations of ADHD. A twin cohort enriched for ADHD and other neurodevelopmental conditions were analysed. The Attention Problems subscale of the Child Behavior Checklist/Adult Behavior Checklist (CBCL/ABCL-AP) was used to measure the participants' severity of ADHD symptoms. Physical health issues were obtained with a validated questionnaire and were tested in relation to ADHD symptom severity in a co-twin control model. Neurological problems were significantly associated with a diagnosis of ADHD. A conditional model for the analysis of within-twin pair effects revealed an inverse association between digestive problems and the severity of ADHD symptoms, after adjusting for co-existing autism spectrum disorder and ADHD medications. Our findings suggest that individuals with ADHD are susceptible to neurological problems, why a thorough neurological check-up is indicated in clinical practice for this population. In addition, health conditions of digestive system could be considered as a non-shared environmental factor for behavioral phenotypes in ADHD. It supports the possible role of gut-brain axis in the underpinnings of ADHD symptoms, at least for a subgroup of individuals with certain genetic predisposition.Gadolinium based contrast agents (GBCAs) are widely used in clinical MRI since the mid-1980s. Recently, concerns have been raised that trace amounts of Gadolinium (Gd), detected in brains even long time after GBCA application, may cause yet unrecognized clinical consequences. selleck compound We therefore assessed the behavioral phenotype, neuro-histopathology, and Gd localization after repeated administration of linear (gadodiamide) or macrocyclic (gadobutrol) GBCA in rats. While most behavioral tests revealed no difference between treatment groups, we observed a transient and reversible decrease of the startle reflex after gadodiamide application. Residual Gd in the lateral cerebellar nucleus was neither associated with a general gene expression pathway deregulation nor with neuronal cell loss, but in gadodiamide-treated rats Gd was associated with the perineuronal net protein aggrecan and segregated to high molecular weight fractions. Our behavioral finding together with Gd distribution and speciation support a substance class difference for Gd presence in the brain after GBCA application.In the genome of SARS-CoV-2, the 5'-terminus encodes a polyprotein, which is further cleaved into 15 non-structural proteins whereas the 3' terminus encodes four structural proteins and eight accessory proteins. Among these 27 proteins, the present study aimed to discover likely antigenic proteins and epitopes to be used for the development of a vaccine or serodiagnostic assay using an in silico approach. For this purpose, after the full genome analysis of SARS-CoV-2 Wuhan isolate and variant proteins that are detected frequently, surface proteins including spike, envelope, and membrane proteins as well as proteins with signal peptide were determined as probable vaccine candidates whereas the remaining were considered as possible antigens to be used during the development of serodiagnostic assays. According to results obtained, among 27 proteins, 26 of them were predicted as probable antigen. In 26 proteins, spike protein was selected as the best vaccine candidate because of having a signal peptide, negative GRAVY value, one transmembrane helix, moderate aliphatic index, a big molecular weight, a long-estimated half-life, beta wrap motifs as well as having stable, soluble and non-allergic features. In addition, orf7a, orf8, and nsp-10 proteins with signal peptide were considered as potential vaccine candidates. Nucleocapsid protein and a highly antigenic GGDGKMKD epitope were identified as ideal antigens to be used in the development of serodiagnostic assays. Moreover, considering MHC-I alleles, highly antigenic KLNDLCFTNV and ITLCFTLKRK epitopes can be used to develop an epitope-based peptide vaccine.The quantum Internet enables networking based on the fundamentals of quantum mechanics. Here, methods and procedures of resource prioritization and resource balancing are defined for the quantum Internet. We define a model for resource consumption optimization in quantum repeaters, and a strongly-entangled network structure for resource balancing. We study the resource-balancing efficiency of the strongly-entangled structure. We prove that a strongly-entangled quantum network is two times more efficient in a resource balancing problem than a full-mesh network of the traditional Internet.The severity of COVID-19 lung disease is higher in the elderly and people with pre-existing co-morbidities. link2 People who were born preterm may be at greater risk for COVID-19 because their early exposure to oxygen (hyperoxia) at birth increases the severity of respiratory viral infections. Hyperoxia at birth increases the severity of influenza A virus infections in adult mice by reducing the number of alveolar epithelial type 2 (AT2) cells. Since AT2 cells express the SARS-CoV-2 receptors angiotensin converting enzyme (ACE2) and transmembrane protease/serine subfamily member 2 (TMPRSS2), their expression should decline as AT2 cells are depleted by hyperoxia. Instead, ACE2 was detected in airway Club cells and endothelial cells at birth, and then AT2 cells at one year of age. link3 Neonatal hyperoxia stimulated expression of ACE2 in Club cells and in AT2 cells by 2 months of age. It also stimulated expression of TMPRSS2 in the lung. Increased expression of SARS-CoV-2 receptors was blocked by mitoTEMPO, a mitochondrial superoxide scavenger that reduced oxidative stress and DNA damage seen in oxygen-exposed mice. Our finding that hyperoxia enhances the age-dependent expression of SARS-CoV-2 receptors in mice helps explain why COVID-19 lung disease is greater in the elderly and people with pre-existing co-morbidities.Germ cells are vital for reproduction and heredity. However, the mechanisms underlying female germ cell development in primates, especially in late embryonic stages, remain elusive. Here, we performed single-cell RNA sequencing of 12,471 cells from whole fetal ovaries, and explored the communications between germ cells and niche cells. We depicted the two waves of oogenesis at single-cell resolution and demonstrated that progenitor theca cells exhibit similar characteristics to Leydig cells in fetal monkey ovaries. Notably, we found that ZGLP1 displays differentially expressed patterns between mouse and monkey, which is not overlapped with NANOG in monkey germ cells, suggesting its role in meiosis entry but not in activating oogenic program in primates. Furthermore, the majority of germ cell clusters that sharply express PRDM9 and SPO11 might undergo apoptosis after cyst breakdown, leading to germ cell attrition. Overall, our work provides new insights into the molecular and cellular basis of primate fetal ovary development at single-cell resolution.Stem bending caused by mechanical failure is a major constraint for high-quality herbaceous peony (Paeonia lactiflora Pall.) cut flowers, but little is known about the underlying factors. In this study, two P. lactiflora cultivars, Xixia Yingxue (bending) and Hong Feng (upright), were used to investigate differences in stem bending. The results showed that the stem mechanical strength of Hong Feng was significantly higher than that of Xixia Yingxue, and the thickening of the secondary cell wall and the number of thickened secondary cell wall layers in Hong Feng were significantly higher than those in Xixia Yingxue. Moreover, compared with Xixia Yingxue, Hong Feng showed greater lignification of the cell wall and lignin deposition in the cell walls of the sclerenchyma, vascular bundle sheath and duct. All three types of lignin monomers were detected. The S-lignin, G-lignin, and total lignin contents and the activities of several lignin biosynthesis-related enzymes were higher in Hong Feng than in the other cultivar, and the S-lignin content was closely correlated with stem mechanical strength. In addition, 113,974 full-length isoforms with an average read length of 2106 bp were obtained from the full-length transcriptome of P. lactiflora stems, and differential expression analysis was performed based on the comparative transcriptomes of these two cultivars. Ten lignin biosynthesis-related genes, including 26 members that were closely associated with lignin content, were identified, and multiple upregulated and downregulated transcription factors were found to positively or negatively regulate lignin biosynthesis. Consequently, lignin was shown to provide mechanical support to P. lactiflora stems, providing useful information for understanding the formation of P. lactiflora stem strength.