Willoughbyfernandez2048
Urban horticulture and community gardening have become more and more popular in the past years, however, the risk of bioaccumulation of atmospheric polyaromatic hydrocarbons (PAHs) in vegetables grown in polluted areas cannot be neglected. In our study, the No. 227 OECD GUIDELINE FOR THE TESTING OF CHEMICALS Terrestrial Plant Test Vegetative Vigour Test was followed to assess foliar uptake of PAHs from aqueous extract of an urban aerosol. Using lettuce (Lactuca sativa) as a test organism, significant accumulation was experienced. The highest bioconcentration factors (BCFs) were experienced for naphthalene and for anthracene, pyrene and fluoranthene showed the lowest bioaccumulation potential. BCF of each PAH showed strong correlation with molecular weight. The standard protocol defined by the Guideline made it possible to assess bioaccumulation pattern under controlled laboratory conditions.The effect of vermicompost added to a loam soil on the leaching behaviour of two herbicides (triclopyr and fluroxypyr) was examined. Mobility of the herbicides was assessed using disturbed soil columns under laboratory conditions. In both cases, the addition of vermicompost significantly increased the sorption of the compounds. For both, DT50 values were slightly higher in the amended soil, due to the increased adsorption. Rate constants (k) calculated according to pseudo-first order model were significantly lower in the case of triclopyr (very persistent), which led to a much lower degradation rate compared to fluroxypyr (persistent) in both unamended and amended soils. Values calculated for the experimental leaching index (ELI) in unamended and amended soils showed medium and high leachability for fluroxypyr (0.31 and 0.29) and triclopyr (0.72 and 0.70), respectively. Other index-based screening models (GUS, RLPI, LIX) also catalogue both herbicides as potential leachers. Results confirm that triclopyr and fluroxypyr may contaminate groundwater resources.Eutrophication and metal contamination are the principal pollution problem for almost all inland lakes in world. Phytoremediation is one of the viable solutions for this concern. The present study analysed the concentration and distribution of six metals (cadmium, chromium, copper, nickel, lead and zinc) in sediment and macrophyte samples of Varthur Lake, Bangalore. Higher concentrations of studied metals in sediment were observed at the inlet and north shoreline regions of the lake. Alternanthera philoxeroides and Eichhornia crassipes accumulated higher concentration of metals than other species. Accumulation of metals in the sediment were Cu > Zn > Cr > Ni > Pb > Cd, whereas the order in macrophyte samples was Cu > Zn > Cr > Pb > Ni > Cd. Bioconcentration factor (BCF) and translocation factor (TF) of metals in macrophytes revealed metal pollution could be remediated through phytoextraction and phytostabilization.A triangular gold nanoplate (AuNPL)-based colorimetric assay is presented for ultrasensitive determination of cupric ions (Cu2+) and mercuric ions (Hg2+) in sequence. AuNPLs were found to be etched efficiently when producing triiodide ions (I3-) by a redox reaction between Cu2+ and iodide ions (I-), leading to a change of the shape of AuNPLs from triangular to sphere along with a color change from blue to pink. In the presence of Hg2+ the etching of AuNPLs was suppressed due to the consumption of I- by the formation of HgI2. With an increase of the concentration of the Hg2+ a transformation from sphere to triangular in the shape of AuNPLs occurred with a color change from pink to blue. The evolution of AuNPLs from etching to anti-etching state by sequential addition of Cu2+ and Hg2+ was accompanied with color variations and band shifts of localized surface plasmon resonance (LSPR), allowing for visual and spectroscopic determination of Cu2+ and Hg2+ successively within 15 min. In the range 0.01-1.5 μM for Cu2+ and 0.02-3.0 μM for Hg2+, the linear relationship between the band shift values and the target ions concentration was found good (R2 > 0.996). The limit of detections (3S/k) was 19 nM for Cu2+ and 9 nM for Hg2+, respectively. The lowest visual estimation concentration was 80 nM for both Cu2+ and Hg2+ through the distinguishable color changes. This system exhibited desirable selectivity for Cu2+ and Hg2+ over other common ions tested. The method has been successfully applied to sequential determination of Cu2+ and Hg2+ in real water and food samples. Graphical abstract Scheme 1 Schematic illustration for sequential detection of Cu2+ and Hg2+ based on etching of AuNPLs.Quinidine is an antiarrhythmic drug commonly used for the treatment of cardiac ailments. It affects oxidative phosphorylation, calcium uptake, and ion channels of mitochondria. We have investigated the interaction of Quinidine and mitochondrial voltage-dependent anion channel (VDAC). VDAC was purified from neuronal tissue of Wistar rats and in vitro bilayer electrophysiology experiments were performed on it. 50-mM Quinidine treatment on VDAC leads to a sudden drop in its conductance. The dose of Quinidine leading to a half-maximal current through a single-channel VDAC was calculated using Quinidine at different concentrations. Rigosertib cost In silico molecular docking studies using Autodock-4.2 software indicate interaction between Quinidine and VDAC. Docking results demonstrate the interaction of Quinidine and VDAC on its Glutamic acid residue (Glu-206 of VDAC). Fluorescence spectroscopy results on Quinidine and Glutamic acid interaction show an increase in the intensity and wavelength of Quinidine fluorescence, whereas no interaction between Quinidine and Cysteine was observed. This further supports the Glutamic acid and Quinidine interaction. In conclusion, we report Quinidine partially blocks VDAC due to the interaction of Glutamic acid and Quinidine in the channel pore.Elongation factor P (EF-P) is a translation protein factor that plays an important role in specialized translation of consecutive proline amino acid motifs. EF-P is an essential protein for cell fitness in native environmental conditions. It regulates synthesis of proteins involved in bacterial motility, environmental adaptation and bacterial virulence, thus making EF-P a potential drug target. In the present study, we determined the solution and crystal structure of EF-P from the pathogenic bacteria Staphylococcus aureus at 1.48 Å resolution. The structure can serve as a platform for structure-based drug design of novel antibiotics to combat the growing antibiotic resistance of S. aureus.