Willisabel1383

Z Iurium Wiki

Symptomatic brainstem compression from vertebral artery dolichoectasia is rare. There are no recognised diagnostic or treatment criteria to guide management of this disease. We report a case of medullary compression and cerebral ischaemia from an enlarged and tortuous vertebral artery. Our patient developed progressive dysphonia and dysphagia. Cerebral MRI revealed compression of the medulla oblongata by a right ectatic vertebral artery and a right occipital lobe infarct. Other causes of bulbar dysfunction were ruled out. He was treated with anticoagulation and underwent percutaneous endoscopic gastrostomy. We review selected literature on the presentation, diagnosis and management of this rare neurologic condition.Giant cell arteritis can result in a wide range of symptoms due to the extensive distribution of the external carotid artery. Face and neck swelling and trismus are under-recognised features of giant cell arteritis and can present as the initial symptom prior to the development of classical temporal tenderness and jaw claudication. The lack of awareness of the less common symptoms may result in a late diagnosis of giant cell arteritis, leading to irreversible vision loss. In this paper, we present a case of neck swelling and airway narrowing as the initial manifestation of giant cell arteritis.

Oncolytic viruses reduce tumor burden in animal models and have generated promising results in clinical trials. However, it is likely that oncolytic viruses will be more effective when used in combination with other therapies. Current therapeutic approaches, including chemotherapeutics, come with dose-limiting toxicities. Another option is to combine oncolytic viruses with immunotherapeutic approaches.

Using experimental models of metastatic 4T1 breast cancer and ID8 ovarian peritoneal carcinomatosis, we examined natural killer T (NKT) cell-based immunotherapy in combination with recombinant oncolytic vesicular stomatitis virus (VSV) or reovirus. 4T1 mammary carcinoma cells or ID8 ovarian cancer cells were injected into syngeneic mice. Tumor-bearing mice were treated with VSV or reovirus followed by activation of NKT cells via the intravenous administration of autologous dendritic cells loaded with the glycolipid antigen α-galactosylceramide. The effects of VSV and reovirus on immunogenic cell death (ICD) immunotherapy can be effectively combined to decrease tumor burden in models of metastatic breast and ovarian cancers. Oncolytic VSV and reovirus induced differential responses in our models which may relate to differences in virus activity or tumor susceptibility.

Taken together, these results demonstrate that oncolytic VSV and NKT cell immunotherapy can be effectively combined to decrease tumor burden in models of metastatic breast and ovarian cancers. selleckchem Oncolytic VSV and reovirus induced differential responses in our models which may relate to differences in virus activity or tumor susceptibility.

Adoptive cell therapy based on the infusion of chimeric antigen receptor (CAR) T cells has shown remarkable efficacy for the treatment of hematologic malignancies. The primary mechanism of action of these infused T cells is the direct killing of tumor cells expressing the cognate antigen. However, understanding why only some T cells are capable of killing, and identifying mechanisms that can improve killing has remained elusive.

To identify molecular and cellular mechanisms that can improve T-cell killing, we utilized integrated high-throughput single-cell functional profiling by microscopy, followed by robotic retrieval and transcriptional profiling.

With the aid of mathematical modeling we demonstrate that non-killer CAR T cells comprise a heterogeneous population that arise from failure in each of the discrete steps leading to the killing. Differential transcriptional single-cell profiling of killers and non-killers identified CD137 as an inducible costimulatory molecule upregulated on killer T cellsance the function/proliferation of killer T cells leading to direct anti-tumor benefit.

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with no effective standard therapy. Breast cancer stem-like cells (BCSCs) in primary TNBCs are reported to be responsible for metastatic spread of the disease and resistance to chemotherapy, but no available therapeutic tools target BCSCs. We previously reported that the ganglioside GD2 is highly expressed on BCSCs and that inhibition of its expression hampers TNBC growth. We therefore hypothesized that the anti-GD2 antibody dinutuximab (ch14.18) targets GD2

BCSCs and inhibits TNBC growth.

To test our hypothesis, we first determined GD2 expression via immunohistochemistry in frozen primary tumor samples from patients with TNBC (n=89). Then, we examined the effects of dinutuximab on TNBC cell adhesion, migration, and mammosphere formation in vitro and on tumor growth in vivo using TNBC cell-line and patient-derived xenograft (PDX) models.

We found that GD2 was expressed in around 60% of primary TNBC tumors at variable levpproach for TNBC.

Dinutuximab successfully eliminated GD2+ cells and reduced tumor growth in both in vivo models. Our data provide proof-of-concept for the criticality of GD2 in BCSCs and demonstrate the potential of dinutuximab as a novel therapeutic approach for TNBC.Niemann-Pick disease type C (NPC) is a rare, fatal, neurodegenerative lysosomal disease caused by mutations of either NPC1 or NPC2. NPC2 is a soluble lysosomal protein that functions in coordination with NPC1 to efflux cholesterol from the lysosomal compartment. Mutations of either gene result in the accumulation of unesterified cholesterol and other lipids in the late endosome/lysosome, and reduction of cellular cholesterol bioavailability. Zygotic null npc2m/m zebrafish showed significant unesterified cholesterol accumulation at larval stages, a reduction in body size, and motor and balance defects in adulthood. However, the phenotype at embryonic stages was milder than expected, suggesting a possible role of maternal Npc2 in embryonic development. Maternal-zygotic npc2m/m zebrafish exhibited significant developmental defects, including defective otic vesicle development/absent otoliths, abnormal head/brain development, curved/twisted body axes and no circulating blood cells, and died by 72 hpf. RNA-seq analysis conducted on 30 hpf npc2+/m and MZnpc2m/m embryos revealed a significant reduction in the expression of notch3 and other downstream genes in the Notch signaling pathway, suggesting that impaired Notch3 signaling underlies aspects of the developmental defects observed in MZnpc2m/m zebrafish.How the body and organs balance their relative growth is of key importance for coordinating size and function. This is of particular relevance in organisms, which continue to grow over their entire life span. link2 We addressed this issue in the neuroretina of medaka fish (Oryzias latipes), a well-studied system with which to address vertebrate organ growth. We reveal that a central growth regulator, Igf1 receptor (Igf1r), is necessary and sufficient for proliferation control in the postembryonic retinal stem cell niche the ciliary marginal zone (CMZ). Targeted activation of Igf1r signaling in the CMZ uncouples neuroretina growth from body size control, and we demonstrate that Igf1r operates on progenitor cells, stimulating their proliferation. Activation of Igf1r signaling increases retinal size while preserving its structural integrity, revealing a modular organization in which progenitor differentiation and neurogenesis are self-organized and highly regulated. Our findings position Igf signaling as a key module for controlling retinal size and composition, with important evolutionary implications.Off-center spindle positioning in mammalian oocytes enables asymmetric divisions in size, which are important for subsequent embryogenesis. The migration of the meiosis I spindle from the oocyte center to its cortex is mediated by F-actin. Specifically, an F-actin cage surrounds the microtubule spindle and applies forces to it. To better understand how F-actin transmits forces to the spindle, we studied a potential direct link between F-actin and microtubules. For this, we tested the implication of myosin-X, a known F-actin and microtubule binder involved in spindle morphogenesis and/or positioning in somatic cells, amphibian oocytes and embryos. Using a mouse strain conditionally invalidated for myosin-X in oocytes and by live-cell imaging, we show that myosin-X is not localized on the spindle, and is dispensable for spindle and F-actin assembly. It is not required for force transmission as spindle migration and chromosome alignment occur normally. More broadly, myosin-X is dispensable for oocyte developmental potential and female fertility. We therefore exclude a role for myosin-X in transmitting F-actin-mediated forces to the spindle, opening new perspectives regarding this mechanism in mouse oocytes, which differ from most mitotic cells.The Hunchback (Hb) transcription factor is crucial for anterior-posterior patterning of the Drosophila embryo. The maternal hb mRNA acts as a paradigm for translational regulation due to its repression in the posterior of the embryo. However, little is known about the translatability of zygotically transcribed hb mRNAs. Here, we adapt the SunTag system, developed for imaging translation at single-mRNA resolution in tissue culture cells, to the Drosophila embryo to study the translation dynamics of zygotic hb mRNAs. link3 Using single-molecule imaging in fixed and live embryos, we provide evidence for translational repression of zygotic SunTag-hb mRNAs. Whereas the proportion of SunTag-hb mRNAs translated is initially uniform, translation declines from the anterior over time until it becomes restricted to a posterior band in the expression domain. We discuss how regulated hb mRNA translation may help establish the sharp Hb expression boundary, which is a model for precision and noise during developmental patterning. Overall, our data show how use of the SunTag method on fixed and live embryos is a powerful combination for elucidating spatiotemporal regulation of mRNA translation in Drosophila.Fertility and gamete reserves are maintained by asymmetric divisions of the germline stem cells to produce new stem cells or daughters that differentiate as gametes. Before entering meiosis, differentiating germ cells (GCs) of sexual animals typically undergo cystogenesis. This evolutionarily conserved process involves synchronous and incomplete mitotic divisions of a GC daughter (cystoblast) to generate sister cells connected by intercellular bridges that facilitate the exchange of materials to support rapid expansion of the gamete progenitor population. Here, we investigated cystogenesis in zebrafish and found that early GCs are connected by ring canals, and show that Deleted in azoospermia-like (Dazl), a conserved vertebrate RNA-binding protein (Rbp), is a regulator of this process. Analysis of dazl mutants revealed the essential role of Dazl in regulating incomplete cytokinesis, germline cyst formation and germline stem cell specification before the meiotic transition. Accordingly, dazl mutant GCs form defective ring canals, and ultimately remain as individual cells that fail to differentiate as meiocytes.

Autoři článku: Willisabel1383 (Lentz Oliver)