Williamhassan5867
e results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.In the Mediterranean, Paracentrotus lividus and Sphaerechinus granularis are important drivers of benthic ecosystems, often coexisting in sublittoral communities. However, the introduction of the invasive diadematoid Diadema setosum, which utilizes venomous spines, may affect these communities. To describe the mechanical properties of the test and spines of these three species, specimens were collected in winter of 2019 from the sublittoral zone of the Dodecanese island complex, southeastern Aegean Sea. This region serves as a gateway for invasive species to the Mediterranean Sea. Crushing test was conducted on live individuals, while 3-point bending test was used to estimate spine stiffness. Porosity and mineralogy of the test and spine, thickness of the test, and breaking length of the spine were measured and compared, while the microstructural architecture was also determined. The test of S. granularis was the most robust (194.35 ± 59.59 N), while the spines of D. setosum (4.76 ± 2.13 GPa) exhibited highesising its defense, by depending on venomous bearing spines. This enables this species to occupy not only tropical habitats, where it is indigenous, but also temperate like the eastern Mediterranean, which it has recently invaded.Timber harvesting can influence headwater streams by altering stream productivity, with cascading effects on the food web and predators within, including stream salamanders. Although studies have examined shifts in salamander occupancy or abundance following timber harvest, few examine sublethal effects such as changes in growth and demography. To examine the effect of upland harvesting on growth of the stream-associated Ouachita dusky salamander (Desmognathus brimleyorum), we used capture-mark-recapture over three years at three headwater streams embedded in intensely managed pine forests in west-central Arkansas. The pine stands surrounding two of the streams were harvested, with retention of a 14- and 21-m-wide forested stream buffer on each side of the stream, whereas the third stream was an unharvested control. At the two treatment sites, measurements of newly metamorphosed salamanders were on average 4.0 and 5.7 mm larger post-harvest compared with pre-harvest. We next assessed the influence of timber harvest on growth of post-metamorphic salamanders with a hierarchical von Bertalanffy growth model that included an effect of harvest on growth rate. Using measurements from 839 individual D. brimleyorum recaptured between 1 and 6 times (total captures, n = 1229), we found growth rates to be 40% higher post-harvest. Our study is among the first to examine responses of individual stream salamanders to timber harvesting, and we discuss mechanisms that may be responsible for observed shifts in growth. Our results suggest timber harvest that includes retention of a riparian buffer (i.e., streamside management zone) may have short-term positive effects on juvenile stream salamander growth, potentially offsetting negative sublethal effects associated with harvest.Marine-derived resource subsidies can generate intrapopulation variation in the behaviors and diets of terrestrial consumers. How omnivores respond, given their multiple trophic interactions, is not well understood. We sampled mice (Peromyscus keeni) and their food sources at five sites on three islands of the Central Coast of British Columbia, Canada, to test predictions regarding variation in the spatial behavior and consumption of marine-subsidized foods among individuals. About 50% of detections (n = 27 recaptures) occurred at traps closest to shoreline (25 m), with capture frequencies declining significantly inland (up to 200 m). Stable isotope signatures (δ 13C and δ 15N), particularly δ 15N, in plant foods, forest arthropod prey, and mouse feces were significantly enriched near shorelines compared with inland, while δ 13C patterns were more variable. Bayesian isotope mixing models applied to isotope values in mouse hair indicated that over one-third (35-37%) of diet was comprised of beach-dwelling arthropods, a marine-derived food source. Males were more abundant near the shoreline than females and consumed more marine-derived prey, regardless of reproductive status or availability of other food sources. Our results identify how multiple pathways of marine nutrient transfer can subsidize terrestrial omnivores and how subsets of recipient populations can show variation in spatial and dietary response.The obligate mutualistic basidiomycete fungus, Leucocoprinus gongylophorus, mediates nutrition of leaf-cutting ants with carbons from vegetal matter. In addition, diazotrophic Enterobacteriales in the fungus garden and intestinal Rhizobiales supposedly mediate assimilation of atmospheric nitrogen, and Entomoplasmatales in the genus Mesoplasma, as well as other yet unidentified strains, supposedly mediate ant assimilation of other compounds from vegetal matter, such as citrate, fructose, and amino acids. Together, these nutritional partners would support the production of high yields of leafcutter biomass. In the present investigation, we propose that three phylogenetically distinct and culturable diazotrophs in the genera Ralstonia, Methylobacterium, and Pseudomonas integrate this symbiotic nutrition network, facilitating ant nutrition on nitrogen. Strains in these genera were often isolated and directly sequenced in 16S rRNA libraries from the ant abdomen, together with the nondiazotrophs Acinetobacter and Brachybacterium. These five isolates were underrepresented in libraries, suggesting that none of them is dominant in vivo. Libraries have been dominated by four uncultured Rhizobiales strains in the genera Liberibacter, Terasakiella, and Bartonella and, only in Acromyrmex ants, by the Entomoplasmatales in the genus Mesoplasma. Acromyrmex also presented small amounts of two other uncultured Entomoplasmatales strains, Entomoplasma and Spiroplasma. The absence of Entomoplasmatales in Atta workers implicates that the association with these bacteria is not mandatory for ant biomass production. Most of the strains that we detected in South American ants were genetically similar with strains previously described in association with leafcutters from Central and North America, indicating wide geographic dispersion, and suggesting fixed ecological services.We investigated how the phylogenetic structure of Amazonian plant communities varies along an edaphic gradient within the non-inundated forests. Forty localities were sampled on three terrain types representing two kinds of soil clayey soils of a high base cation concentration derived from the Solimões formation, and loamy soils with lower base cation concentration derived from the Içá formation and alluvial terraces. P5091 in vivo Phylogenetic community metrics were calculated for each locality for ferns and palms both with ferns as one group and for each of three fern clades with a crown group age comparable to that of palms. Palm and fern communities showed significant and contrasting phylogenetic signals along the soil gradient. Fern species richness increased but standard effect size of mean pairwise distance (SES.MPD) and variation of pairwise distances (VPD) decreased with increasing soil base cation concentration. In contrast, palm communities were more species rich on less cation-rich soils and their SES.MPD increased with soil base cation concentration. Species turnover between the communities reflected the soil gradient slightly better when based on species occurrences than when phylogenetic distances between the species were considered. Each of the three fern subclades behaved differently from each other and from the entire fern clade. The fern clade whose phylogenetic patterns were most similar to those of palms also resembled palms in being most species-rich on cation-poor soils. The phylogenetic structuring of local plant communities varies along a soil base cation concentration gradient within non-inundated Amazonian rain forests. Lineages can show either similar or different phylogenetic community structure patterns and evolutionary trajectories, and we suggest this to be linked to their environmental adaptations. Consequently, geological heterogeneity can be expected to translate into a potentially highly diverse set of evolutionarily distinct community assembly pathways in Amazonia and elsewhere.Mutualisms are ubiquitous in nature, provide important ecosystem services, and involve many species of interest for conservation. Theoretical progress on the population dynamics of mutualistic interactions, however, comparatively lagged behind that of trophic and competitive interactions, leading to the impression that ecologists still lack a generalized framework to investigate the population dynamics of mutualisms. Yet, over the last 90 years, abundant theoretical work has accumulated, ranging from abstract to detailed. Here, we review and synthesize historical models of two-species mutualisms. We find that population dynamics of mutualisms are qualitatively robust across derivations, including levels of detail, types of benefit, and inspiring systems. Specifically, mutualisms tend to exhibit stable coexistence at high density and destabilizing thresholds at low density. These dynamics emerge when benefits of mutualism saturate, whether due to intrinsic or extrinsic density dependence in intraspecific processes, interspecific processes, or both. We distinguish between thresholds resulting from Allee effects, low partner density, and high partner density, and their mathematical and conceptual causes. Our synthesis suggests that there exists a robust population dynamic theory of mutualism that can make general predictions.Urbanization is rapidly altering landscapes worldwide, changing environmental conditions, and creating novel selection pressures for many organisms. Local environmental conditions affect the expression and evolution of sexual signals and mating behaviors; changes in such traits have important evolutionary consequences because of their effect on reproduction. In this review, we synthesize research investigating how sexual communication is affected by the environmental changes associated with urbanization-including pollution from noise, light, and heavy metals, habitat fragmentation, impervious surfaces, urban heat islands, and changes in resources and predation. Urbanization often has negative effects on sexual communication through signal masking, altering condition-dependent signal expression, and weakening female preferences. Though there are documented instances of seemingly adaptive shifts in trait expression, the ultimate impact on fitness is rarely tested. The field of urban evolution is still relativel, consequences of urban expansion on the biota, and provide new opportunities to underscore the relevance of evolutionary biology in the Anthropocene.Floral characters are important for the systematics of the Lauraceae. However, structure and development of the flowers remain poorly known in the family. In this study, we observed the variation and early development of flowers of Beilschmiedia appendiculata, which belongs to the Cryptocarya clade of the family. The results indicate that the shoot apical meristems (SAMs) of the floral buds are enlarged and become a platform for the programmed initiation of the floral organs; floral organs develop basically in an acropetal pattern; phyllotaxis is whorled, initiation of floral primordia within a whorl is asynchronous; floral merosity is extremely variable, for example, dimerous, trimerous, tetramerous, dimerous plus trimerous, and trimerous plus tetramerous. In addition, this species has lost the innermost staminal whorl and glands are not closely associated with stamens of the third staminal whorl, which is unusual in the family Lauraceae. Our new observations broaden our knowledge of the variation of floral structure in Beilschmiedia and pose a fundamental question regarding the ecology underlying the lability of floral organs in B.