Wilkersoncollins5892

Z Iurium Wiki

Predators can exert nonconsumptive effects (NCEs) on prey, which often take place through prey behavioural adjustments to minimise predation risk. As NCEs are widespread in nature, interest is growing to determine whether NCEs on a prey species can indirectly influence several other species simultaneously, thus leading to changes in community structure. In this study, we investigate whether a predator can exert NCEs on a foundation species and indirectly affect community structure. Through laboratory experiments, we first tested whether the predatory marine snail Acanthina monodon exerts negative NCEs on larviphagy (consumption of pelagic larvae) and phytoplankton filtration rates of the mussel Perumytilus purpuratus, an intertidal foundation species. These hypotheses stem from the notion that mussels may decrease feeding activities in the presence of predator cues to limit detection by predators. Afterwards, a field experiment tested whether the presence of A. monodon near mussel beds leads to higher colonisation rates of invertebrates that reproduce through pelagic larvae (expected under a lower larviphagy in P. purpuratus) and to a lower algal biomass on P. purpuratus shells (expected under a lower metabolite excretion in the mussels), thereby changing the community structure of the species typically found in P. purpuratus beds. The laboratory experiments revealed that waterborne cues from A. monodon limit the larviphagy and filtration rates of P. purpuratus. In turn, the field experiment showed that A. monodon cues led to greater abundances of barnacles and bivalves and a lower algal biomass in P. purpuratus beds, thus altering community structure. Overall, this study shows that a predator can indirectly affect community structure through NCEs on an invertebrate foundation species. As invertebrate foundation species are ubiquitous worldwide, understanding predator NCEs on these organisms could help to better understand community regulation in systems structured by such species.A central principle in trait-based ecology is that trait variation has an adaptive value. However, uncertainty over which plant traits influence individual performance across environmental gradients may limit our ability to use traits to infer ecological processes at larger scales. To better understand which traits are linked to performance under different precipitation regimes, we measured above- and belowground traits, growth, and reproductive allocation for four annual and four perennial species from a coastal sage scrub community in California under conditions of 50%, 100%, and 150% ambient precipitation. Across water treatments, annual species displayed morphological trait values consistent with high rates of resource acquisition (e.g., low leaf mass per area, low root tissue density, high specific root length), and aboveground measures of resource acquisition (including photosynthetic rate and leaf N concentration) were positively associated with plant performance (reproductive allocation). Results from a structural equation model demonstrated that leaf traits explained 38% of the variation in reproductive allocation across the water gradient in annual species, while root traits accounted for only 6%. Although roots play a critical role in water uptake, more work is needed to understand the mechanisms by which root trait variation can influence performance in water-limited environments. Perennial species showed lower trait plasticity than annuals across the water gradient and were more variable as a group in terms of trait-performance relationships, indicating that species rely on different functional strategies to respond to drought. Our finding that species identity drives much of the variation in trait values and trait-performance relationships across a water gradient may simplify efforts to model ecological processes, such as productivity, that are potentially influenced by environmentally induced shifts in trait values.Photosynthetic sensitivity to drought is a fundamental constraint on land-plant evolution and ecosystem function. However, little is known about how the sensitivity of photosynthesis to nonstomatal limitations varies among species in the context of phylogenetic relationships. Using saplings of 10 Eucalyptus species, we measured maximum CO2 -saturated photosynthesis using A-ci curves at several different leaf water potentials (ψleaf ) to quantify mesophyll photosynthetic sensitivity to ψleaf (MPS), a measure of how rapidly nonstomatal limitations to carbon uptake increase with declining ψleaf . MPS was compared to the macroclimatic moisture availability of the species' native habitats, while accounting for phylogenetic relationships. FHT-1015 solubility dmso We found that species native to mesic habitats have greater MPS but higher maximum photosynthetic rates during non-water-stressed conditions, revealing a trade-off between maximum photosynthesis and drought sensitivity. Species with lower turgor loss points have lower MPS, indicating coordination among photosynthetic and water-relations traits. By accounting for phylogenetic relationships among closely related species, we provide the first compelling evidence that MPS in Eucalyptus evolved in an adaptive fashion with climatically determined moisture availability, opening the way for further study of this poorly explored dimension of plant adaptation to drought.The European Society of Endodontology (ESE) is in the process of developing S3Level Clinical Practice Guidelines for the treatment of pulpal and apical disease for the benefit of clinicians and patients. In order to ensure a homogenous review process in the development of the clinical practice guidelines, it is essential that the core outcomes for all endodontic treatments are standardized and recommendations are made regarding minimum follow-up time specific to each outcome measure. In the absence of a recognized core outcome set in Endodontics, the current project aimed to follow an established consensus process to define the most appropriate clinician and patient-reported outcomes. As part of the project, recommendations will also be agreed regarding an acceptable minimum follow-up period for studies by literature review and group discussion. The selected outcome measures and follow-up periods will be used in subsequent systematic analyses of the literature to investigate the effectiveness of endodontic treatment to alleviate pulpitis and apical periodontitis.

Autoři článku: Wilkersoncollins5892 (Driscoll Mohammad)