Wilkersoncarson8607
Health and longevity in all organisms are strongly influenced by the environment. check details To fully understand how environmental factors interact with genetic and stochastic factors to modulate the aging process, it is crucial to precisely control environmental conditions for long-term studies. In the commonly used model organism Caenorhabditis elegans, existing assays for healthspan and lifespan have inherent limitations, making it difficult to perform large-scale longitudinal aging studies under precise environmental control. To address these constraints, we developed the Health and Lifespan Testing Hub (HeALTH), an automated, microfluidic-based system for robust longitudinal behavioral monitoring. Our system provides long-term (i.e. entire lifespan) spatiotemporal environmental control. We demonstrate healthspan and lifespan studies under a variety of genetic and environmental perturbations while observing how individuality plays a role in the aging process. This system is generalizable beyond aging research, particularly for short- or long-term behavioral assays, and could be adapted for other model systems.Helicobacter pylori (H. pylori) infection is on the rise as a cause of immune thrombocytopenia (ITP). It has been suggested that platelet recovery can be achieved following successful microbial eradication, although, the exact pathophysiology has yet to be fully elucidated. This study evaluated the long-term effects of H. pylori eradication monotherapy on platelet count recovery in patients with ITP. H. pylori eradication was analysed in 61 ITP patients. Patients who maintained a complete response (CR) for more than six months were classified as sustained responders (SR). The prevalence of H. pylori infection was 54.3% (75/138), and the success rate of eradication with first-line therapy was 71.4% (35/49). Patients who had achieved a CR at 2 months maintained a higher platelet count thereafter. At 1 year following eradication, platelet counts had increased 2.78 times in the eradicated group, 1.36 times in the sustained infection group, and 1.33 times in the no infection group compared with the baseline (P = 0.016).The tumor immune microenvironment (TIME) of head and neck squamous cell carcinomas (HNSCC) and other solid malignancies is a key determinant of therapy response and prognosis. Among other factors, it is shaped by the tumor mutational burden and defects in DNA repair enzymes. Based on the TCGA database we aimed to define specific, altered genes associated with different TIME types, which might represent new predictive markers or targets for immuno-therapeutic approaches. The HNSCC cohort of the TCGA database was used to define 3 TIME types (immune-activated, immune-suppressed, immune-absent) according to expression of immune-related genes. Mutation frequencies were correlated to the 3 TIME types. Overall survival was best in the immune-activated group. 9 genes were significantly differentially mutated in the 3 TIME types with strongest differences for TP53 and the histone-acetyltransferase EP300. Mutations in EP300 correlated with an immune-activated TIME. In panCancer analyses anti-tumor immune activity was increased in EP300 mutated esophageal, stomach and prostate cancers. Downregulation of EP300 gene expression was associated with higher anti-tumor immunity in most solid malignancies. Since EP300 is a promoter of glycolysis, which negatively affects anti-tumor immune response, we analyzed the association of EP300 with tumor metabolism. PanCancer tumor metabolism was strongly shifted towards oxidative phosphorylation in EP300 downregulated tumors. In silico analyses of of publicly available in vitro data showed a decrease of glycolysis-associated genes after treatment with the EP300 inhibitor C646. Our study reveals associations of specific gene alterations with different TIME types. In detail, we defined EP300 as a panCancer inhibitor of the TIME most likely via metabolic modulation. In this context EP300 represents a promising predictive biomarker and an immuno-therapeutic target.Variation in DNA methylation (DNAm) is associated with lifestyle factors such as smoking and body mass index (BMI) but there has been little research exploring its ability to identify individuals with major depressive disorder (MDD). Using penalised regression on genome-wide CpG methylation, we tested whether DNAm risk scores (MRS), trained on 1223 MDD cases and 1824 controls, could discriminate between cases (n = 363) and controls (n = 1417) in an independent sample, comparing their predictive accuracy to polygenic risk scores (PRS). The MRS explained 1.75% of the variance in MDD (β = 0.338, p = 1.17 × 10-7) and remained associated after adjustment for lifestyle factors (β = 0.219, p = 0.001, R2 = 0.68%). When modelled alongside PRS (β = 0.384, p = 4.69 × 10-9) the MRS remained associated with MDD (β = 0.327, p = 5.66 × 10-7). The MRS was also associated with incident cases of MDD who were well at recruitment but went on to develop MDD at a later assessment (β = 0.193, p = 0.016, R2 = 0.52%). Heritability analyses found additive genetic effects explained 22% of variance in the MRS, with a further 19% explained by pedigree-associated genetic effects and 16% by the shared couple environment. Smoking status was also strongly associated with MRS (β = 0.440, p ≤ 2 × 10-16). After removing smokers from the training set, the MRS strongly associated with BMI (β = 0.053, p = 0.021). We tested the association of MRS with 61 behavioural phenotypes and found that whilst PRS were associated with psychosocial and mental health phenotypes, MRS were more strongly associated with lifestyle and sociodemographic factors. DNAm-based risk scores of MDD significantly discriminated MDD cases from controls in an independent dataset and may represent an archive of exposures to lifestyle factors that are relevant to the prediction of MDD.The Asian citrus psyllid (ACP; Diaphorina citri) is the vector of Candidatus Liberibacter asiaticus (CLas) that is associated with the devastating Huanglongbing (HLB; citrus greening disease). This pest of Asian origin has spread into the Americas and more recently into a few countries in East Africa. During recent surveys, suspect ACP adults and nymphs were recorded for the first time infesting citrus trees in southwest Nigeria. Morphological identification and DNA barcoding confirmed the samples to be D. citri. Analysis of the obtained sequences revealed that the ACP recorded in Nigeria clustered with other taxa in the previously identified B1 clade that consists of populations from different continents. The presence of the endosymbionts Ca. Carsonella ruddii and Ca. Profftella armatura in ACP from Nigeria was also confirmed by PCR and Sanger sequencing. The ACP individuals were assayed for the presence of CLaf, CLam and CLas by qPCR, but none of the insects tested positive for any of the Liberibacters. The prolific nature of ACP and the tropical climate prevailing in the citrus-producing areas of Nigeria and other West African countries may favor its rapid spread and population increase, thus posing a grave threat to the sustainability of citriculture in these countries.