Wilcoxernst2229

Z Iurium Wiki

In this work, we reviewed the most important achievements of INESC TEC related to the fabrication of long-period fiber gratings using the electric arc technique. We focused on the fabrication setup, the type of fiber used, and the effect of the fabrication parameters on the gratings' transmission spectra. The theory was presented, as well as a discussion on the mechanisms responsible for the formation of the gratings, supported by the measurement of the temperature reached by the fiber during an electric arc discharge.Promising electrical properties of single-walled carbon nanotubes (SWCNTs) open a spectrum of applications for this material. As the SWCNT electronic characteristics respond well to the presence of various analytes, this makes them highly sensitive sensors. In this contribution, selected organophosphorus compounds were detected by studying their impact on the electronic properties of the nanocarbon network. The goal was to untangle the n-doping mechanism behind the beneficial effect of organic phosphine derivatives on the electrical conductivity of SWCNT networks. The highest sensitivity was obtained in the case of the application of 1,6-Bis(diphenylphoshpino)hexane. Consequently, free-standing SWCNT films experienced a four-fold improvement to the electrical conductivity from 272 ± 21 to 1010 ± 44 S/cm and an order of magnitude increase in the power factor. This was ascribed to the beneficial action of electron-rich phenyl moieties linked with a long alkyl chain, making the dopant interact well with SWCNTs.Intense interest in reference electrode design and fabrication has recently been enriched with the application of 3D printing of electrodes with salt-loaded PVC membranes. This type of material is attractive in sensor technology and is challenging to implement in 3D. In this report, several improvements and simplifications in the technology were focused on and supported by a fundamental electrochemical characterization.Decades of scientific research have been conducted on developing and evaluating methods for automated emotion recognition. With exponentially growing technology, there is a wide range of emerging applications that require emotional state recognition of the user. This paper investigates a robust approach for multimodal emotion recognition during a conversation. Three separate models for audio, video and text modalities are structured and fine-tuned on the MELD. In this paper, a transformer-based crossmodality fusion with the EmbraceNet architecture is employed to estimate the emotion. The proposed multimodal network architecture can achieve up to 65% accuracy, which significantly surpasses any of the unimodal models. We provide multiple evaluation techniques applied to our work to show that our model is robust and can even outperform the state-of-the-art models on the MELD.To meet the increasing need of high-data-rate and broadband wireless communication systems, the devices and its circuits R&D under Millimeter, Sub-Millimeter, or even Terahertz (THz) frequency bands are attracting more and more attention from not only academic, but also industrial areas. Most of the former research on the THz waveband (0.1-10 THz) antenna design is mainly focused on realizing high directional gain, such as horn antennas, even though the coverage area is very limited when comparing with the current Wi-Fi system. One solution for the horizontally omnidirectional communication antenna is using the structure of multiple split-ring resonators (MSRRs). Aiming at this point, a novel 300 GHz microstrip antenna array based on the dual-surfaced multiple split-ring resonators (DSMSRRs) is proposed in this paper. By employing the two parallel microstrip transmission lines, different MSRRs are fed and connected on two surfaces of the PCB with a centrally symmetric way about them. The feeding port of the whole antenna is in between the centers of the two microstrip lines. Thus, this kind of structure is a so-called DSMSRR. Based on the different size of the MSRRs, different or multiple working wavebands can be achieved on the whole antenna. Cyclopamine mouse Firstly, in this paper, the quasi-static model is used to analyze the factors affecting the resonance frequency of MSRRs. Simulation and measured results demonstrate that the resonant frequency of the proposed array antenna is 300 GHz, which meets the design requirements of the expected frequency point and exhibits good radiation characteristics. Then, a dual-band antenna is designed on the above methods, and it is proved by simulation that the working frequency bands of the proposed dual-band antenna with reflection coefficient below -10 dB are 274.1-295.6 GHz and 306.3-313.4 GHz.To improve the measurement and subsequent use of human skin temperature (Tsk) data, there is a need for practical methods to compare Tsk sensors and to quantify and better understand measurement error. We sought to develop, evaluate, and utilize a skin model with skin-like thermal properties as a tool for benchtop Tsk sensor comparisons and assessments of local temperature disturbance and sensor bias over a range of surface temperatures. Inter-sensor comparisons performed on the model were compared to measurements performed in vivo, where 14 adult males completed an experimental session involving rest and cycling exercise. Three types of Tsk sensors (two of them commercially available and one custom made) were investigated. Skin-model-derived inter-sensor differences were similar (within ±0.4 °C) to the human trial when comparing the two commercial Tsk sensors, but not for the custom Tsk sensor. Using the skin model, all surface Tsk sensors caused a local temperature disturbance with the magnitude and direction dependent upon the sensor and attachment and linearly related to the surface-to-environment temperature gradient. Likewise, surface Tsk sensors also showed bias from both the underlying disturbed surface temperature and that same surface in its otherwise undisturbed state. This work supports the development and use of increasingly realistic benchtop skin models for practical Tsk sensor comparisons and for identifying potential measurement errors, both of which are important for future Tsk sensor design, characterization, correction, and end use.

Autoři článku: Wilcoxernst2229 (Newell Mckinney)