Wiesegeertsen2930

Z Iurium Wiki

Theta phase-gamma amplitude coupling (TGC) plays an important role in several different cognitive processes. Although spontaneous brain activity at the resting state is crucial in preparing for cognitive performance, the functional role of resting-state TGC remains unclear. To investigate the role of resting-state TGC, electroencephalogram recordings were obtained for 56 healthy volunteers while they were in the resting state, with their eyes closed, and then when they were engaged in a retention interval period in the visual memory task. The TGCs of the two different conditions were calculated and compared. The results indicated that the modulation index of TGC during the retention interval of the visual working memory (VWM) task was not higher than that during the resting state; however, the topographical distribution of TGC during the resting state was negatively correlated with TGC during VWM task at the local level. The topographical distribution of TGC during the resting state was negatively correlated with TGC coordinates' engagement of brain areas in local and large-scale networks and during task performance at the local level. These findings support the view that TGC reflects information-processing and signal interaction across distant brain areas. These results demonstrate that TGC could explain the efficiency of competing brain networks.

(1) To determine which psychosocial aspects predict tinnitus-related distress in a large self-reported dataset of patients with chronic tinnitus, and (2) to identify underlying constructs by means of factor analysis.

A cohort of 1958 patients of the Charité Tinnitus Center, Berlin completed a large questionnaire battery that comprised sociodemographic data, tinnitus-related distress, general psychological stress experience, emotional symptoms, and somatic complaints. To identify a construct of "tinnitus-related distress", significant predictive items were grouped using factor analysis.

For the prediction of tinnitus-related distress (linear regression model with R

= 0.7), depressive fatigue symptoms (concentration, sleep, rumination, joy decreased), the experience of emotional strain, somatization tendencies (pain experience, doctor contacts), and age appeared to play a role. The factor analysis revealed five factors "stress", "pain experience", "fatigue", "autonomy", and low "educational level".

Tinnitus-related distress is predicted by psychological and sociodemographic indices. Relevant factors seem to be depressive exhaustion with somatic expressions such as sleep and concentration problems, somatization, general psychological stress, and reduced activity, in addition to higher age.

Tinnitus-related distress is predicted by psychological and sociodemographic indices. Relevant factors seem to be depressive exhaustion with somatic expressions such as sleep and concentration problems, somatization, general psychological stress, and reduced activity, in addition to higher age.Recent neuroimaging research has suggested that interpreters and non-interpreters elicit different brain activation patterns during simultaneous language translation. However, whether these two groups have different functional connectivity during such a task, and how the neural coupling is among brain subregions, are still not well understood. In this study, we recruited Mandarin (L1)/English (L2) interpreters and non-interpreter bilinguals, whom we asked to perform simultaneous language translation and reading tasks. Functional near-infrared spectroscopy (fNIRS) was used to collect cortical brain data for participants during each task, using 68 channels that covered the prefrontal cortex and the bilateral perisylvian regions. Our findings revealed both interpreter and non-interpreter groups recruited the right dorsolateral prefrontal hub when completing the simultaneous language translation tasks. We also found different functional connectivity between the groups. The interpreter group was characterized by information exchange between the frontal cortex and Wernicke's area. In comparison, the non-interpreter group revealed neural coupling between the frontal cortex and Broca's area. These findings indicate expertise modulates functional connectivity, possibly because of more developed cognitive skills associated with executive functions in interpreters.Physiological studies have shown that self-body images receive unique recognition processing in a wide range of brain areas, from the frontal lobe to the parietal-occipital cortex. Event-related potential (ERP) studies have shown that the self-referential effect on the image of a hand increases P300 components, but such studies do not evaluate brain oscillatory activity. In this study, we aimed to discover the self-specific brain electrophysiological activity in relation to hand images. ERPs on the fronto-parietal midline were elicited by a three-stimulus visual oddball task using hand images the self-hand, another hand (most similar to the self-hand), and another hand (similar to the self-hand). We analyzed ERP waveform and brain oscillatory activity by simple averaging and time-frequency analysis. The simple averaging analysis found no significant differences between the responses for the three stimulus tasks in all time windows. However, time-frequency analysis showed that self-hand stimuli elicited high gamma ERS in 650-900 ms at the Cz electrode compared to other hand stimuli. Our results show that brain activity specific to the self-referential process to the self-hand image was reflected in the long latency gamma band activity in the mid-central region. This high gamma-band activity at the Cz electrode may be similar to the activity of the mirror neuron system, which is involved in hand motion.We compared neuropsychological functioning and prevalence of mild cognitive impairment (MCI) in two birth cohorts born 20 years apart when participants had reached the same age, i.e., the mid-60s. The study followed up 500 volunteers born 1930-1932 (C30) and 502 born 1950-1952 (C50). Participants underwent medical, neuropsychological, and psychiatric examinations in 1993-1996 (T1), 1997-2000 (T2), 2005-2008 (T3), and 2014-2016 (T4), including assessment of abstract thinking, memory performance, verbal fluency, visuo-spatial thinking, psychomotor speed, and attention. Healthy participants from C30 at T2 (n = 298) and from C50 at T4 (n = 205) were compared using multivariate ANCOVAs. Groups slightly differed with respect to age (C50 63.86 ± 1.14 vs. C30 66.80 ± 0.91; p less then 0.05) and years of education (13.28 ± 2.89 vs. 14.56 ± 2.45). After correcting for age, C50 significantly outperformed C30 in all domains except concentration and verbal fluency. After additionally adjusting for education, C50 significantly outperformed C30 in declarative memory performances and abstract thinking only. Prevalence rates of MCI were 25.2% in C30 and 9.6% in C50 (p less then 0.001). Our findings confirm the association between better educational attainment and enhanced cognitive performance in "younger" old individuals. While this association corresponds to the Flynn effect, various life course influences may have also contributed to better performance, including improvements in healthcare provision, medication, and lifestyle factors. Their overall effects may foster cognitive reserve and thus translate into the decline in MCI prevalence reported here.The presence of external observers has been shown to affect performance on cognitive tasks, but the parameters of this impact for different types of tasks and the underlying neural dynamics are less understood. The current study examined the behavioral and brain activity effects of perceived observation on participants' visual working memory (VWM) in a virtual reality (VR) classroom setting, using the task format as a moderating variable. Participants (n = 21) were equipped with a 57-channel EEG cap, and neural data were collected as they completed two VWM tasks under two observation conditions (observed and not observed) in a within-subjects experimental design. The "observation" condition was operationalized through the addition of a static human avatar in the VR classroom. The avatar's presence was associated with a significant effect on extending the task response time, but no effect was found on task accuracy. This outcome may have been due to a ceiling effect, as the mean participant task scores were quite high. EEG data analysis supported the behavioral findings by showing consistent differences between the no-observation and observation conditions for one of the VWM tasks only. These neural differences were identified in the dorsolateral prefrontal cortex (dlPFC) and the occipital cortex (OC) regions, with higher theta-band activity occurring in the dlPFC during stimulus encoding and in the OC during response selection when the "observing" avatar was present. These findings provide evidence that perceived observation can inhibit performance during visual tasks by altering attentional focus, even in virtual contexts.Dementia is a neurodegenerative disease that leads to the development of cognitive deficits, such as aphasia, apraxia, and agnosia. DLin-KC2-DMA in vivo It is currently considered one of the most significant major medical problems worldwide, primarily affecting the elderly. This condition gradually impairs the patient's cognition, eventually leading to the inability to perform everyday tasks without assistance. Since dementia is an incurable disease, early detection plays an important role in delaying its progression. Because of this, tools and methods have been developed to help accurately diagnose patients in their early stages. State-of-the-art methods have shown that the use of syntactic-type linguistic features provides a sensitive and noninvasive tool for detecting dementia in its early stages. However, these methods lack relevant semantic information. In this work, we propose a novel methodology, based on the semantic features approach, by using sentence embeddings computed by Siamese BERT networks (SBERT), along with support vector machine (SVM), K-nearest neighbors (KNN), random forest, and an artificial neural network (ANN) as classifiers. Our methodology extracted 17 features that provide demographic, lexical, syntactic, and semantic information from 550 oral production samples of elderly controls and people with Alzheimer's disease, provided by the DementiaBank Pitt Corpus database. To quantify the relevance of the extracted features for the dementia classification task, we calculated the mutual information score, which demonstrates a dependence between our features and the MMSE score. The experimental classification performance metrics, such as the accuracy, precision, recall, and F1 score (77, 80, 80, and 80%, respectively), validate that our methodology performs better than syntax-based methods and the BERT approach when only the linguistic features are used.Mitochondrial dysfunction and exacerbated neuroinflammation are critical factors in the pathogenesis of both familial and non-familial forms of Parkinson's disease (PD). This study aims to understand the possible ameliorative effects of zonisamide on microglial mitochondrial dysfunction in PD. We prepared 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and lipopolysaccharide (LPS) co-treated mouse models of PD to investigate the effects of zonisamide on mitochondrial reactive oxygen species generation in microglial cells. Consequently, we utilised a mouse BV2 cell line that is commonly used for microglial studies to determine whether zonisamide could ameliorate LPS-treated mitochondrial dysfunction in microglia. Flow cytometry assay indicated that zonisamide abolished microglial reactive oxygen species (ROS) generation in PD models. Extracellular flux assays showed that LPS exposure to BV2 cells at 1 μg/mL drastically reduced the mitochondrial oxygen consumption rate (OCR) and extracellular acidification rate (ECAR).

Autoři článku: Wiesegeertsen2930 (Tarp Mohamad)