Whitneyhoffman5193

Z Iurium Wiki

The activation of adipose tissue browning and thermogenesis provides a new strategy to counter obesity and associated metabolic diseases. Here, a natural flavonoid chrysin is used as the supplement of a high-fat diet (HFD). Dietary chrysin alleviates adiposity and insulin resistance in HFD-fed mice. Meanwhile, dietary chrysin elevates systemic energy expenditure and enhances the uncoupling protein-1 (UCP1) level in subcutaneous adipose tissue (SAT), which is accompanied by the increased thermogenic program, beige preadipocyte number, and angiogenesis in SAT. Dietary chrysin also induces the expression of SAT platelet-derived growth factor receptor α (PDGFRα), which commits adipose progenitor cells to differentiate into beige or white adipocytes in response to various environmental signals. Double immunofluorescent staining for UCP1 and PDGFRα reveals that chrysin elevates the number of UCP1+PDGFRα+ beige progenitors in SAT. Further, chrysin treatment reverses the effects of the specific PDGFRα inhibitor imatinib on browning differentiation of stromal vascular fraction cells from SAT. Finally, chrysin-induced adipocyte browning is correlated with the expressions of microRNAs as PDGFRα inhibitors or thermogenesis suppressors. In conclusion, dietary chrysin promotes subcutaneous adipocyte browning and systematic energy expenditure by regulating PDGFRα and microRNA expressions in HFD-fed mice.Due to the importance of the dolomite mineral in carbonate reservoirs, the wettability characteristics of dolomite surfaces were studied with both experiments and molecular dynamics simulations. Contact angle measurements confirm that the dolomite surface can be rendered oil-wet by carboxylates (acidic components of crude oil) and that the cationic surfactant can reverse the oil-wetness more effectively than the anionic surfactant used in this study. The oil-wetness of an aged dolomite chip was reduced when treated with MgSO4 solution at 80 °C, while CaCl2, MgCl2, and Na2SO4 solutions did not produce any significant wettability alteration. The effects of surfactants and divalent ions, Ca2+, Mg2+, and SO42- (also referred to as Smart Water ions), were simulated with two model dolomite surfaces containing point defects and step vacancies, respectively. The results indicate that the cationic surfactant can weaken the attraction between the oil phase and the carboxylates, while the anionic surfactant tends to maintain the oil-wetness of the dolomite surface by replacing the carboxylates through competitive adsorption. All Ca2+, Mg2+, and SO42- ions can act as potential determining ions, and the detachment of carboxylates is due to the repulsion from SO42- ions drawn close to the surface in the presence of adsorbed Mg2+.Recently, irreversible inhibitors have attracted great interest in antitumors due to their advantages of forming covalent bonds to target proteins. Herein, some benzothiazepinone compounds (BTZs) have been designed and synthesized as novel covalent GSK-3β inhibitors with high selectivity for the kinase panel. The irreversible covalent binding mode was identified by kinetics and mass spectrometry, and the main labeled residue was confirmed to be the unique Cys14 that exists only in GSK-3β. click here The candidate 4-3 (IC50 = 6.6 μM) showed good proliferation inhibition and apoptosis-inducing ability to leukemia cell lines, low cytotoxicity on normal cell lines, and no hERG inhibition, which hinted the potential efficacy and safety. Furthermore, 4-3 exhibited decent pharmacokinetic properties in vivo and remarkably inhibited tumor growth in the acute promyelocytic leukemia (APL) mouse model. All the results suggest that these newly irreversible BTZ compounds might be useful in the treatment of cancer such as APL.With a poor prognosis, glioblastoma multiforme is the most aggressive tumor of the central nervous system in humans. The aim of this study was to develop novel tracers for the tumor targeting and imaging of overexpressed serotonin-7 receptors (5-HT7Rs) in U-87 MG glioma xenografted nude mice. Two phenylpiperazine derivatives named as PHH and MPHH were designed, and the corresponding radiotracers 99mTc-PHH and 99mTc-MPHH were synthesized in high radiochemical purity (>95%). 99mTc-MPHH showed a higher affinity to 5-HT7Rs on U-87 MG cells compared to 99mTc-PHH. In biodistribution studies, the radiocomplexes showed good brain uptake at 15 min combined with good radioactivity retention in the brain for 240 min. Regional rabbit brain studies indicated a higher radioactivity concentration in the hippocampus and diencephalon than in the cerebellum. Compared to 99mTc-MPHH, the 99mTc-PHH exhibited a significantly increased tumor uptake at 15 and 60 min, but the rapid blood clearance of 99mTc-MPHH led to enhanced tumor-to-muscle ratios at 240 min. A significant reduction in tumor uptake 60 min after an injection of pimozide (5-HT7 receptor antagonist) confirms the tumor uptake was receptor-mediated specifically. The tumor-to-contralateral muscle tissue ratio of 99mTc-PHH and 99mTc-MPHH in nude mice with U-87 MG xenograft was measured (5.25 and 4.65) at 60 min as well as (6.25 and 6.76) at 240 min, respectively.The rational design and preparation of hierarchical hollow structures have promising potential in electrochemical energy storage systems. In this paper, double-shell hollow carbon fibers (DSHCFs) with tunable thickness and shell spacing are prepared using hollow electrospun polystyrene fibers as the hard template and in situ coated polypyrrole as the carbon source. The as-prepared DSHCFs with an optimized structure exhibit a submicrometer shell spacing and a nanoscaled shell thickness, which guarantees sufficient contact area with the electrolyte and provides abundant electrochemical active sites for Li+ storage. Owing to the unique structural advantages, a DSHCF-based anode shows favorable transport kinetics for both Li+ ions and electrons during the lithiation/delithiation process, and a high reversible capacity of 348 mAh g-1 at 5.0 A g-1 is well maintained even after 500 cycles with no obvious capacity attenuation. Particular emphasis is given to kinetic Li+ storage mechanisms in DSHCFs that are discussed in detail, providing a new avenue for developing high-performance carbon materials for the practical application of energy storage devices.

Autoři článku: Whitneyhoffman5193 (Newman Trolle)