Whiteheaddixon7886

Z Iurium Wiki

The result of the physical survey shows that NDWI was the best method, with an accuracy of 96.94%. Hence, the lake water spread area trend is determined based on calculated NDWI values. The lake water spread area significantly decreased from March to June and July to October at a 5% significance level. The maximum decrease in water spread area has been determined from March to June (7.7%), which was followed by the period July to October (4.67%) and then November to February (2.79%). The study results show that the lake's water spread area decreased sharply for the analyzed period. The study might be helpful for the government, policymakers, and water experts to make plans for reclaiming and restoring Nainital Lake. This study is very helpful in states such as Uttarakhand, where physical mapping is not possible every time due to its tough topography and climate conditions.Nasal airflow plays a critical role in olfactory processes, and both retronasal and orthonasal olfaction involve sensorimotor processes that facilitate the delivery of volatiles to the olfactory epithelium during odor sampling. Although methods are readily available for monitoring nasal airflow characteristics in laboratory and clinical settings, our understanding of odor sampling behavior would be enhanced by the development of inexpensive wearable technologies. Thus, we developed a method of monitoring nasal air pressure using a lightweight, open-source brain-computer interface (BCI) system and used the system to characterize patterns of retronasal airflow in human participants performing an oral fluid discrimination task. Participants exhibited relatively sustained low-rate retronasal airflow during sampling punctuated by higher-rate pulses often associated with deglutition. Although characteristics of post-deglutitive pulses did not differ across fluid conditions, the cumulative duration, probability, and estimated volume of retronasal airflow were greater during discrimination of perceptually similar solutions. These findings demonstrate the utility of a consumer-grade BCI system in assessing human olfactory behavior. They suggest further that sensorimotor processes regulate retronasal airflow to optimize the delivery of volatiles to the olfactory epithelium and that discrimination of perceptually similar oral fluids may be accomplished by varying the duration of optimal airflow rate.As one of the key components of wind turbines, gearboxes are under complex alternating loads for a long time, and the safety and reliability of the whole machine are often affected by the failure of internal gears and bearings. Aiming at the difficulty of optimizing the parameters of wind turbine gearbox fault detection models based on extreme random forest, a fault detection model with extreme random forest optimized by the improved butterfly optimization algorithm (IBOA-ERF) is proposed. The algebraic sum of the false alarm rate and the missing alarm rate of the fault detection model is constructed as the fitness function, and the initial position and position update strategy of the individual are improved. A chaotic mapping strategy is introduced to replace the original population initialization method to enhance the randomness of the initial population distribution. An adaptive inertia weight factor is proposed, combined with the landmark operator of the pigeon swarm optimization algorithm to update the population position iteration equation to speed up the convergence speed and improve the diversity and robustness of the butterfly optimization algorithm. The dynamic switching method of local and global search stages is adopted to achieve dynamic balance between global exploration and local search, and to avoid falling into local optima. The ERF fault detection model is trained, and the improved butterfly optimization algorithm is used to obtain optimal parameters to achieve fast response of the proposed model with good robustness and generalization under high-dimensional data. The experimental results show that, compared with other optimization algorithms, the proposed fault detection method of wind turbine gearboxes has a lower false alarm rate and missing alarm rate.Computer vision technology is increasingly being used in areas such as intelligent security and autonomous driving. Users need accurate and reliable visual information, but the images obtained under severe weather conditions are often disturbed by rainy weather, causing image scenes to look blurry. Many current single image deraining algorithms achieve good performance but have limitations in retaining detailed image information. In this paper, we design a Scale-space Feature Recalibration Network (SFR-Net) for single image deraining. The proposed network improves the image feature extraction and characterization capability of a Multi-scale Extraction Recalibration Block (MERB) using dilated convolution with different convolution kernel sizes, which results in rich multi-scale rain streaks features. In addition, we develop a Subspace Coordinated Attention Mechanism (SCAM) and embed it into MERB, which combines coordinated attention recalibration and a subspace attention mechanism to recalibrate the rain streaks feature information learned from the feature extraction phase and eliminate redundant feature information to enhance the transfer of important feature information. Meanwhile, the overall SFR-Net structure uses dense connection and cross-layer feature fusion to repeatedly utilize the feature maps, thus enhancing the understanding of the network and avoiding gradient disappearance. Through extensive experiments on synthetic and real datasets, the proposed method outperforms the recent state-of-the-art deraining algorithms in terms of both the rain removal effect and the preservation of image detail information.An all-fiber glucose sensor is proposed and demonstrated based on a helical intermediate-period fiber grating (HIPFG) produced by using a hydrogen/oxygen flame heating method. The HIPFG, with a grating length of 1.7 cm and a period of 35 μm, presents four sets of double dips with low insertion losses and strong coupling strengths in the transmission spectrum. The HIPFG possesses an averaged refractive index (RI) sensitivity of 213.6 nm/RIU nm/RIU in the RI range of 1.33-1.36 and a highest RI sensitivity of 472 nm/RIU at RI of 1.395. In addition, the HIPFG is demonstrated with a low-temperature sensitivity of 3.67 pm/°C, which promises a self-temperature compensation in glucose detection. In the glucose-sensing test, the HIPFG sensor manifests a detection sensitivity of 0.026 nm/(mg/mL) and a limit of detection (LOD) of 1 mg/mL. Moreover, the HIPFG sensor exhibits good stability in 2 h, indicating its capacity for long-time detection. The properties of easy fabrication, high flexibility, insensitivity to temperature, and good stability of the proposed HIPFG endow it with a promising potential for long-term and compact biosensors.A high-strength bolt connection is the key component of large-scale steel structures. Bolt loosening and preload loss during operation can reduce the load-carrying capacity, safety, and durability of the structures. In order to detect loosening damage in multi-bolt connections of large-scale civil engineering structures, we proposed a multi-bolt loosening identification method based on time-frequency diagrams and a convolutional neural network (CNN) using vi-bro-acoustic modulation (VAM) signals. Continuous wavelet transform was employed to obtain the time-frequency diagrams of VAM signals as the features. Afterward, the CNN model was trained to identify the multi-bolt loosening conditions from the raw time-frequency diagrams intelligently. It helps to get rid of the dependence on traditional manual selection of simplex and ineffective damage index and to eliminate the influence of operational noise of structures on the identification accuracy. A laboratory test was carried out on bolted connection specimens with four high-strength bolts of different degrees of loosening. The effects of different excitations, CNN models, and dataset sizes were investigated. We found that the ResNet-50 CNN model taking time-frequency diagrams of the hammer excited VAM signals, as the input had better performance in identifying the loosened bolts with various degrees of loosening at different positions. The results indicate that the proposed multi-bolt loosening identification method based on VAM and ResNet-50 CNN can identify bolt loosening with a reasonable accuracy, computational efficiency, and robustness.Human pose estimation has long been a fundamental problem in computer vision and artificial intelligence. Prominent among the 2D human pose estimation (HPE) methods are the regression-based approaches, which have been proven to achieve excellent results. However, the ground-truth labels are usually inherently ambiguous in challenging cases such as motion blur, occlusions, and truncation, leading to poor performance measurement and lower levels of accuracy. In this paper, we propose Cofopose, which is a two-stage approach consisting of a person and keypoint detection transformers for 2D human pose estimation. IACS-10759 cell line Cofopose is composed of conditional cross-attention, a conditional DEtection TRansformer (conditional DETR), and an encoder-decoder in the transformer framework; this allows it to achieve person and keypoint detection. In a significant departure from other approaches, we use conditional cross-attention and fine-tune conditional DETR for our person detection, and encoder-decoders in the transformers for our keypoint detection. Cofopose was extensively evaluated using two benchmark datasets, MS COCO and MPII, achieving an improved performance with significant margins over the existing state-of-the-art frameworks.This paper investigates the measurement accuracy of unmanned aerial vehicle-based oblique photography (UAVOP) in bridge deformation identifications. A simply supported concrete beam model was selected and measured using the UAVOP technique. The influences of several parameters, such as overall flight altitude (h), local shooting distance (d), partial image overlap (λ), and arrangement of control points, on the quality of the reconstructed three-dimensional (3D) beam model, were presented and discussed. Experimental results indicated that the quality of the reconstructed 3D model was significantly improved by the fusion overall-partial flight routes (FR), of which the reconstructed model quality was 46.7% higher than those with the single flight route (SR). Despite the minimal impact of overall flight altitude, the reconstructed model quality prominently varied with the local shooting distance, partial image overlap, and control points arrangement. As the d decreased from 12 m to 8 m, the model quality was improved by 48.2%, and an improvement of 42.5% was also achieved by increasing the λ from 70% to 80%. The reconstructed model quality of UAVOP with the global-plane control points was 78.4% and 38.4%, respectively, higher than those with the linear and regional control points. Furthermore, an optimized scheme of UAVOP with control points in global-plane arrangement and FR (h = 50 m, d = 8 m, and λ = 80%) was recommended. A comparison between the results measured by the UAVOP and the total station showed maximum identification errors of 1.3 mm. The study's outcomes are expected to serve as potential references for future applications of UAVOP in bridge measurements.

Autoři článku: Whiteheaddixon7886 (Futtrup Jernigan)