Wheelerbech5087

Z Iurium Wiki

Bladder tumor is the fifth most prevalent tumor in men, yet its pathogenesis remains to be fully identified. Albeit a host of long noncoding RNAs (lncRNA) are emerging as new players involved in bladder tumor, the functions of many lncRNAs are still enigmatic. Reports on the deluge of studies on lncRNA

have been convincingly associated with various tumors, but without mention of its roles in bladder tumor. Therefore, the roles of

in bladder tumor cells were explored in our study.

Quantitative real-time PCR assays and bioinformatic tools were applied in bladder tumor cells to identify the

and

expression. Western blot assays were performed to obtain the protein levels of bladder tumor related key molecules. CCK8, clonogenic assay, scratch wound healing, and transwell assays were separately applied to identify the functional roles of

on proliferation, migration, and invasion in bladder tumor cells.

First,

downregulation in bladder tumor cells was identified. Ruboxistaurin order Overexpression and knockdown e-AS2 related to PI3K/AKT/mTOR signal pathway was further identified. Of note, we found that ADAMTS9-AS2 has a significant effect on several key autophagy and apoptotic proteins. Therefore, these observations will provide supportive evidence to ADAMTS9-AS2 as a potential biomarker in patients with bladder tumor.

Our previous study has revealed that T-lymphoma invasion and metastasis-inducing factor 1 (Tiam1) overexpression are significantly associated with aggressive behavior and poor prognosis in patients with laryngeal squamous cell carcinoma (LSCC). However, the influence of Tiam1 in the radioresistance of LSCC and its mechanism have never been elucidated.

Western blotting was used to confirm the relationship between Tiam1 and the JNK/ATF-2 signaling pathway. To explore the specific functions of Tiam1 and JNK/ATF-2 signaling pathway on the proliferation and apoptosis of LSCC after radiation, cloning formation assay and flow cytometry were conducted in vitro, and the experiments on a xenograft mouse model and TUNEL assay were performed in vivo.

Western blotting indicated that Tiam1 can regulate the JNK/ATF-2 signaling pathway through the influence of the activity of JNK and ATF-2. Up-regulation of Tiam1 could promote proliferation and inhibit apoptosis of LSCC after radiation both in vitro and in vivo. Moreover, the down-regulation of the JNK/ATF-2 signaling pathway reduced the radioresistance of LSCC caused by Tiam1 up-regulation.

These results suggest that the up-regulation of Tiam1 expression can promote the radioresistance of LSCC through activation of the JNK/ATF-2 signaling pathway.

These results suggest that the up-regulation of Tiam1 expression can promote the radioresistance of LSCC through activation of the JNK/ATF-2 signaling pathway.

The STAT3/HIF-1α/VEGF pathway is associated with the development and progress of various tumors including NSCLC. The aim of the present study was to investigate whether resveratrol (RES) could suppress NSCLC progression via inhibiting the expressions of STAT3, HIF-1α, and VEGF in a nude rat model.

Twenty-four nude rats were randomly divided into control, NSCLC, and NSCLC+RES groups. An orthotopic rat model of NSCLC was established. The animals in the NSCLC+RES group received the same operation as the NSCLC group and were intragastrically administered RES at 250 mg/kg/day for 12 weeks. Lung tissue samples were harvested for gross tumor burden measurement, histological examinations, RT-PCR, and Western blot assays.

In the NSCLC+RES group, significant decreases in lung weight index, lung tumor burden, STAT3/HIF-1α/VEGF mRNA, and protein levels were observed when compared with the NSCLC group (all

<0.05). The structural integrity of the lung was less affected and the apoptotic index was significantly higher in the NSCLC+RES group, when compared to the NSCLC group (

<0.05).

RES suppresses NSCLC partly through inhibiting the expressions of STAT3, HIF-1α, and VEGF. The STAT3/HIF-1α/VEGF pathway might be a candidate drug target for developing new chemotherapy agents derived from RES for the treatment of NSCLC.

RES suppresses NSCLC partly through inhibiting the expressions of STAT3, HIF-1α, and VEGF. The STAT3/HIF-1α/VEGF pathway might be a candidate drug target for developing new chemotherapy agents derived from RES for the treatment of NSCLC.

LncRNA EMX2OS (EMX2 opposite strand/antisense RNA) is notably downregulated in prostate cancer (PCa) tissues and may be regarded as a potential molecular biomarker for diagnosis and prognosis. However, its exact role in regulating the development of PCa is obscure.

The EMX2OS expression was assessed in PCa tissues, paracancer tissues, PCa cells and normal prostate epithelial cells by qPCR. Gain- and loss-of-function experiments were performed to investigate the role of EMX2OS and FUS in cGMP-PKG (cyclic guanosine monophosphate-dependent protein kinase)-mediated proliferation, invasion, and migration in human PCa cell lines DU145 and PC3. Then, the interaction of transcription factor 12 (TCF12) with EMX2OS promoter was confirmed by using the dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays. RNA binding protein immunoprecipitation and RNA pull-down assays were used to verify the interaction between EMX2OS and FUS protein. Finally, the role of EMX2OS and FUS in tumor growth in vivo wationally regulated by TCF12, played a synergy role with FUS protein in regulating the proliferation, migration and invasion of PCa cells by activating the cGMP-PKG pathway.

Wolf-Hirschhorn syndrome candidate gene-1 (WHSC1) plays key regulatory roles in cancer development and progression. However, its specific functions and potential mechanisms of action remain to be described in hepatocellular carcinoma (HCC).

WHSC1 expression in HCC was evaluated using The Cancer Genome Atlas and verified in HCC tissues and cell lines using qRT-PCR, Western blotting, and immunohistochemistry. Functional assays were performed to explore the role of WHSC1 in HCC progression. Immunoprecipitation-mass spectrometry, co-immunoprecipitation, immunofluorescence, and immunohistochemistry were conducted to evaluate the interaction between WHSC1 and prolyl 4-hydroxylase subunit beta (P4HB). Pathway enrichment was performed using gene set enrichment analysis.

WHSC1 was markedly overexpressed in HCC tissues and cell lines. The level of expression was strongly associated with adverse clinicopathological characteristics. Survival analyses revealed that WHSC1 upregulation predicted poor overall survival and higher recurrence rates in patients with HCC.

Autoři článku: Wheelerbech5087 (Daly Gates)