Wentworthhoffmann1981
Overall, the inversion results are basically consistent with the measured values and thus can well reflect the variation characteristics of the physical properties of seafloor surface sediments.Since the first experimental observation of all-optical switching phenomena, intensive research has been focused on finding suitable magnetic systems that can be integrated as storage elements within spintronic devices and whose magnetization can be controlled through ultra-short single laser pulses. We report here atomistic spin simulations of all-optical switching in multilayered structures alternating n monolayers of Tb and m monolayers of Co. By using a two temperature model, we numerically calculate the thermal variation of the magnetization of each sublattice as well as the magnetization dynamics of [[Formula see text]/[Formula see text]] multilayers upon incidence of a single laser pulse. In particular, the condition to observe thermally-induced magnetization switching is investigated upon varying systematically both the composition of the sample (n,m) and the laser fluence. The samples with one monolayer of Tb as [[Formula see text]/[Formula see text]] and [[Formula see text]/[Formula see text]] are showing thermally induced magnetization switching above a fluence threshold. The reversal mechanism is mediated by the residual magnetization of the Tb lattice while the Co is fully demagnetized in agreement with the models developed for ferrimagnetic alloys. The switching is however not fully deterministic but the error rate can be tuned by the damping parameter. Increasing the number of monolayers the switching becomes completely stochastic. The intermixing at the Tb/Co interfaces appears to be a promising way to reduce the stochasticity. These results predict for the first time the possibility of TIMS in [Tb/Co] multilayers and suggest the occurrence of sub-picosecond magnetization reversal using single laser pulses.In this work, the effects of co-inoculation between an arbuscular mycorrhizal fungus (AMF) and a phosphate solubilizing bacteria (PSB) to promote the growth and production of sunchoke under field condition were investigated during 2016 and 2017. Four treatments were set up as follows plants without inoculation, with AMF inoculation, with PSB inoculation and with co-inoculation of PSB and AMF. The results showed the presence of PSB and AMF colonization at the harvest stage in both years. This suggested the survival of PSB and successful AMF colonization throughout the experiments. According to correlation analysis, PSB positively affected AMF spore density and colonization rate. Also, both AMF and PSB positively correlated with growth and production of sunchoke. Co-inoculation could enhance various plant parameters. However, better results in 2016 were found in co-inoculation treatment, while AMF inoculation performed the best in 2017. All of these results suggested that our AMF and PSB could effectively promote growth and production of sunchoke under field conditions. Such effects were varied due to different environmental conditions each year. Note that this is the first study showing successful co-inoculation of AMF and PSB for promoting growth and yield of sunchoke in the real cultivation fields.The effect of capric acid, secreted by the probiotic yeasts Saccharomyces boulardii, was evaluated on the activities of fluconazole (FLC) and amphotericin B (AMB) against pathogenic Candida albicans fungus. The findings indicated that capric acid may be a promising additive for use in combination with FLC. A FLC-capric acid combination led to reduced efflux activity of multidrug resistance (MDR) transporter Cdr1p by causing it to relocalize from the plasma membrane (PM) to the interior of the cell. The above effect occurred due to inhibitory effect of FLC-capric acid combination of ergosterol biosynthesis. However, capric acid alone stimulated ergosterol production in C. albicans, which in turn generated cross resistance towards AMB and inhibited its action (PM permeabilization and cytoplasm leakage) against C. albicans cells. This concluded that AMB should not be administered among dietary supplements containing capric acid or S. this website boulardii cells.In a wind tunnel we compared the colour preference for western flower thrips to four types of colour plates (clear, white, blue and yellow) applied with two types of glue (diffuse Stikem versus clear D41). Further the results for blue and yellow preference were validated in two greenhouses. In the wind tunnel, we found a clear preference of yellow over blue when a clear glue (D41) was used. However, with a more diffuse (whitish) glue (Stikem) the preference for yellow over blue disappeared, whereby the attraction to yellow decreased (58%) while the attraction to blue increased (65%). In the greenhouses, we found similar effects as in the wind tunnel with a decrease in attraction to yellow (35%) and increase in attraction to blue (32%) for Stikem compared to D41. Light measurements showed an increase of 18% of blue, 21% of violet light, 8% of yellow and 9% of green light reflected on the yellow Stikem trap versus the yellow D41 trap. On blue plates there was only 4% increase of blue light, 8% decrease of yellow light reflected when Stikem glue was used compared to D41 glue. It is not yet clear if the change of light reflection ratio blue/yellow caused by the glue type plays a role in the change of attraction. The reflective properties of glue are so far an unknown factor in colour choice and may explain partially the different results on colour preference. A small review on thrips colour preference is discussed to determine possible other factors of influence on colour choice.Recently it was highlighted that one-dimensional antiferromagnetic spin models with frustrated boundary conditions, i.e. periodic boundary conditions in a ring with an odd number of elements, may show very peculiar behavior. Indeed the presence of frustrated boundary conditions can destroy the local magnetic orders presented by the models when different boundary conditions are taken into account and induce novel phase transitions. Motivated by these results, we analyze the effects of the introduction of frustrated boundary conditions on several models supporting (symmetry protected) topological orders, and compare our results with the ones obtained with different boundary conditions. None of the topological order phases analyzed are altered by this change. This observation leads naturally to the conjecture that topological phases of one-dimensional systems are in general not affected by topological frustration.