Weisscostello3030
A facile green method for the mechanochemical synthesis of Schiff base phenylhydrazono-N-methylene fluorescein (PHMF) with 95% yields has been established. The synthesized receptor assists in the naked-eye detection of CN- ions in organic and aqueous media, and F- ions in acetonitrile over a series of anions with a color transfer from colorless to pink. A redshift of 160 nm of PHMF-CN- complex in the absorbance spectrum and a turn-on response in the fluorescence spectrum were observed, respectively, at λmax 345 to 515 and 519 nm. A strong interaction of PHMF with CN- and F- ions forming a 13 binding stoichiometry has been noted in this study. In an aqueous medium for CN- ion, the lower limit of detection (LOD) is defined as 9.204 nM, which is quite better in terms of sensitivity. In addition, PHMF's paper-strip sensor for rapid real-time CN- ion sensing was found to be sufficiently sensitive to successfully detect CN- ion in water and a solid state, resulting in a portable device for detecting cyanide ions. In acetonitrile, the receptor's ability to detect CN- ion in cigarette smoke residue was also satisfactorily achieved. Graphical Abstract.Fragmentation flagging (FF), a high-resolution mass spectrometric screening variant that utilizes intentionally produced indicative in-source fragments, was used to screen for per- and polyfluoroalkyl substances (PFASs) in surface waters. Besides expected legacy PFAS, FF enabled the detection of some rarely investigated representatives, such as trifluoromethanesulfonic acid (TFMSA). Additionally, a novel PFAS was detected and identified as tris(pentafluoroethyl)trifluorophosphate (FAP) via MS/MS experiments and confirmed with a reference standard. The first monitoring of FAP in 20 different surface waters revealed a localized contamination affecting three connected rivers with peak concentrations of up to 3.4 μg/L. To the best of our knowledge, this is the first time FAP has been detected in environmental water samples. The detection of FAP, which is exclusively used as a constituent of ionic liquids (ILs), raises questions about the environmental relevance of ILs in general and particularly fluorinated ILs. A following comprehensive literature search revealed that ILs have already been intensely discussed as potential environmental contaminants, but findings reporting ILs in environmental (water) samples are almost non-existent. Furthermore, we address the relevance of ILs in the context of persistent, mobile, and toxic chemicals, which are at present gaining increasing scientific and regulatory interest, and as part of the PFAS "dark matter" that represents the gap between the amount of fluorine originating from known PFAS and the total adsorbable organically bound fluorine. Graphical abstract.During recent years, mid-infrared (MIR) spectroscopy has matured into a versatile and powerful sensing tool for a wide variety of analytical sensing tasks. Attenuated total reflection (ATR) techniques have gained increased interest due to their potential to perform non-destructive sensing tasks close to real time. In ATR, the essential component is the sampling interface, i.e., the ATR waveguide and its material properties interfacing the sample with the evanescent field ensuring efficient photon-molecule interaction. Gallium arsenide (GaAs) is a versatile alternative material vs. commonly used ATR waveguide materials including but not limited to silicon, zinc selenide, and diamond. GaAs-based internal reflection elements (IREs) are a new generation of semiconductor-based waveguides and are herein used for the first time in direct spectroscopic applications combined with conventional Fourier transform infrared (FT-IR) spectroscopy. Next to the characterization of the ATR waveguide, exemplary surface reactions were monitored, and trace-level analyte detection via signal amplification taking advantage of surface-enhanced infrared absorption (SEIRA) effects was demonstrated. As an example of real-world relevance, the mycotoxin aflatoxin B1 (AFB1) was used as a model analyte in food and feed safety analysis. Graphical abstract.This paper gives an overview of the modeling work developed in our group in the last 25 years for various plasmas used in analytical spectrochemistry, i.e., glow discharges (GDs), inductively coupled plasmas (ICPs), and laser ablation (LA) for sample introduction in the ICP and for laser-induced breakdown spectroscopy (LIBS). The modeling approaches are briefly presented, which are different for each case, and some characteristic results are illustrated. These plasmas are used not only in analytical chemistry but also in other applications, and the insights obtained in these other fields were quite helpful for us to develop models for the analytical plasmas. Likewise, there is now a huge interest in plasma-liquid interaction, atmospheric pressure glow discharges (APGDs), and dielectric barrier discharges (DBDs) for environmental, medical, and materials applications of plasmas. The insights obtained in these fields are also very relevant for ambient desorption/ionization sources and for liquid sampling, which are nowadays very popular in analytical chemistry, and they could be very helpful in developing models for these sources as well. Graphical abstract.Alterations in protein glycosylation in colorectal cancer (CRC) have been extensively studied using cell lines as models. However, little is known about their O-glycome and the differences in glycan biosynthesis in different cell types. Temsirolimus molecular weight To provide a better understanding of the variation in O-glycosylation phenotypes and their association with other molecular features, an in-depth O-glycosylation analysis of 26 different CRC cell lines was performed. The released O-glycans were analysed on porous graphitized carbon nano-liquid chromatography system coupled to a mass spectrometer via electrospray ionization (PGC-nano-LC-ESI-MS/MS) allowing isomeric separation as well as in-depth structural characterization. Associations between the observed glycan phenotypes with previously reported cell line transcriptome signatures were examined by canonical correlation analysis. Striking differences are observed between the O-glycomes of 26 CRC cell lines. Unsupervized principal component analysis reveals a separation between well-differentiated colon-like and undifferentiated cell lines.