Weinsteindecker4125

Z Iurium Wiki

The aim of this study was to investigate the performance of single-chamber MEC under applied voltages higher than that for water electrolysis. With different acetate concentrations (1.0-2.0 g/L), the MEC was tested under applied voltages from 0.8 to 2.2 V within 2600 h (54 cycles). Results showed that the MEC was stably operated for the first time within 20 cycles under 2.0 and 2.2 V, compared with the control MEC with significant water electrolysis. The maximum current density reached 27.8 ± 1.4 A/m2 under 2.0 V, which was about three times as that under 0.8 V. The anode potential in the MEC could be kept at 0.832 ± 0.110 V (vs. Ag/AgCl) under 2.2 V, thus without water electrolysis in the MEC. High applied voltage of 1.6 V combined with alkaline solution (pH = 11.2) could result in high hydrogen production and high current density. iFSP1 molecular weight The maximum current density of MEC at 1.6 V and pH = 11.2 reached 42.0 ± 10.0 A/m2, which was 1.85 times as that at 1.6 V and pH = 7.0. The average hydrogen content reached 97.2% of the total biogas throughout all the cycles, indicating that the methanogenesis was successfully inhibited in the MEC at 1.6 V and pH = 11.2. With high hydrogen production rate and current density, the size and investment of MEC could be significantly reduced under high applied voltages. Our results should be useful for extending the range of applied voltages in the MEC.It is increasingly clear that increases in dissolved organic carbon in upland waters in recent decades have often been dominated by acid deposition, but reasons for substantial variation in rates of change remain unclear. This paper focuses on the extent to which spatial properties, such as variation in soil properties, atmospheric deposition and climate, affect the sensitivity of DOC concentrations in soil water. The purpose is to i) examine evidence for differences in site average concentrations and trends in soil water DOC between sites with contrasting ecosystem properties, i.e. vegetation cover and soil type, and ii) identify the wider combination of site characteristics that best explain variation in these DOC metrics between sites. We collated soil water and deposition chemistry, soil chemistry and meteorological data from 15 long-term UK monitoring sites (1992-2010) covering a range of soils, vegetation, climate and acid deposition levels. Mineral soils under forests showed the greatest range of long-term mean DOC concentrations and trends. Regression analysis indicated that acid and sea-salt deposition, and soil sensitivity to acidification were the factors most strongly associated with spatial variation in mean DOC concentrations. Spatial variation in DOC trends were best explained by Al saturation and water flux. Overall, the sensitivity of DOC release from soil to changes in pollutant deposition could be related to the type of vegetation cover and soils chemistry properties, such as Al saturation, divalent base cation content and hydrological regime. The identification of the ecosystem properties that appear most influential in modifying DOC production and responses to long-term drivers, helps elucidate potential mechanistic explanations for differences in DOC dynamics across seemingly similar ecosystems, and points to the importance of DOC mobility in regulating its dynamics.In this study, the natural attenuation potential and biogeochemical analysis of nitrate contaminated bedrock aquifers by injection of carbon sources was evaluated. The denitrification capacity was assessed by injecting different carbon sources (succinate, acetate, fumarate) into the groundwater. Acetate was identified as the optimum source of electron donors for microbial metabolic processes, as it improved the effect of nitrate removal and microbial activity in the groundwater. In addition, when acetate was injected with a C/N ratio = 2.11, the ratio of denitrifying bacteria was the greatest (C/N 2.1 (2.1%) > C/N 4.2 (1.9%) > C/N 7.0 (0.9%) > control (0.7%)). Reflecting the geochemical characteristics of the bedrock aquifer environment, acetate was injected into groundwater at the research site to activate biological heterotrophic denitrification. As a result, the nitrate reduction rate was 0.377 g-N/day (YP-3), while the rate in groundwater unaffected by acetate was significantly lower, at 0.028 g-N/day (YP-4) over the same reaction time. In particular, the ratio of Dechloromonas denitrificans sp., which is a representative denitrification bacteria involved in anaerobic reduction of nitrate, increased (before injection 0.0089%, after injection 1.3067%). Expression of the nosZ gene, which is involved in the denitrification pathway (N2O → N2), increased from 4.82 Log (gene copies L-1) to 9.71 Log (gene copies L-1). Together, these results demonstrate that denitrification in bedrock aquifers can be activated by injection of carbon sources and identified the genetic reason for that denitrification.Extensive development of horizontal drilling and hydraulic fracturing enhanced energy production but raised concerns about drinking-water quality in areas of shale-gas development. One particularly controversial case that has received significant public and scientific attention involves possible contamination of groundwater in the Trinity Aquifer in Parker County, Texas. Despite extensive work, the origin of natural gas in the Trinity Aquifer within this study area is an ongoing debate. Here, we present a comprehensive geochemical dataset collected across three sampling campaigns along with integration of previously published data. Data include major and trace ions, molecular gas compositions, compound-specific stable isotopes of hydrocarbons (δ13C-CH4, δ13C-C2H6, δ2H-CH4), dissolved inorganic carbon (δ13C-DIC), nitrogen (δ15N-N2), water (δ18O, δ2H, 3H), and noble gases (He, Ne, Ar), boron (δ11B) and strontium (87Sr/86Sr) isotopic compositions of water samples from 20 drinking-water wells from the Trinity Aquion paired with hydrocarbon oxidation and secondary methanogenesis. Importantly, no evidence for upward migration of brine or natural gas associated with the Barnett Shale was identified.Adipose tissue has been recently highlighted as a promising matrix for evaluation of cadmium's (Cd) long-term exposure although not frequently considered in epidemiological studies. The association between Cd exposure and type 2 Diabetes Mellitus (T2DM) remains unclear. This work aimed to explore the association between adipose tissue Cd levels and T2DM incidence over a 16-year follow-up in an adult cohort from Southern Spain considering smoking status. We also performed complementary cross-sectional analyses focused on subclinical markers of glucose homeostasis at recruitment. Clinical information was obtained from hospital databases. Socio-demographic characteristics, lifestyle and diet were collected by face-to-face interviews. Homeostatic model assessment (HOMA) values of insulin sensitivity/resistance and β-cell function were calculated using fasting serum glucose, insulin, and C-peptide levels at recruitment. Adipose tissue Cd concentrations were quantified by inductively coupled plasma mass spectrometry. Statistical analyses were performed by means of Cox-regression and multivariable linear regression models. Participants in the 4th quartile (Q4) of Cd concentrations showed a non statistically-significant increased T2DM risk (Hazard Ratio (HR) Q4 vs Q1 1.97; 95% Confidence Interval (CI) 0.69, 5.66). This association was particularly strong and suggestive in current smokers (HR 2.19; 95% CI 0.98, 4.98). Interestingly, smokers in the 2nd tertile (T2) of adipose tissue Cd levels showed increased log-transformed insulin resistance (beta T2 vs T1 0.52; 95% CI 0.07, 0.97), as well as higher log-transformed insulin levels (beta T2 vs T1 0.52; 95% CI 0.08, 0.95). We found evidences supporting that Cd exposure, particularly from tobacco smoking, could be a risk factor for T2DM. In addition, our results support the potential relevance of adipose tissue as a matrix for Cd exposure assessment.Bioclimatic envelope models have been extensively used to predict the vegetation dynamics in response to climate changes. link2 However, they are prone to the uncertainties arising from General Circulation Models (GCMs), classification algorithms and predictors, with low-resolution results and little detail at the regional level. Novel research has focused on the improvement of these models through a combination of climate and soil predictors to enhance ecological consistency. In this framework, we aimed to apply a joint edaphoclimatic envelope to predict the current and future vegetation distribution in the semiarid region of Brazil, which encompasses several classes of vegetation in response to the significant environmental heterogeneity. We employed a variety of machine learning algorithms and GCMs under RCP 4.5 and 8.5 scenarios of Coupled Model Intercomparison Project Phase 5 (CMIP5), in 1 km resolution. The combination of climate and soil predictors resulted in higher detail at landscape-scale and better distinction of vegetations with overlapping climatic niches. In forecasts, soil predictors imposed a buffer effect on vegetation dynamics as they reduced shifts driven solely by climatic drift. Our results with the edaphoclimatic approach pointed to an expansion of the dry Caatinga vegetation, ranging from an average of 16% to 24% on RCP 4.5 and RCP8.5 scenarios, respectively. The shift in environmental suitability from forest to open and dry vegetation implies a major loss to biodiversity, as well as compromising the provision of ecosystem services important for maintaining the economy and livelihoods of the world's largest semiarid population. Predicting the most susceptible regions to future climate change is the first step in developing strategies to mitigate impacts in these areas.Although ultrafiltration (UF) has been extensively employed for drinking water purification, it is crucial to further develop novel membrane materials to improve the antifouling capacity and satisfy the practical usage. Multi-walled carbon nanotubes (MWCNTs) have characteristics that could potentially improve the membrane antifouling performance. Therefore, in this study, modified cellulose UF membranes were prepared using MWCNTs of various outer diameters ranging from 10 to 20 nm to 40-60 nm. The antifouling properties of the modified membrane and natural organic matter (NOM) removal mechanism were investigated while treating water from a local drinking water source river. Overall, the antifouling ability increased by more than one-fold when the nascent cellulose membrane was coated with MWCNTs (outer diameter of 40-60 nm) at a loading of 17.4 g/m2. The molecular weight distribution profiles of the NOM in the raw water and permeates suggest the superior performance of the modified membranes in removing two major NOM fractions with molecular weights ranging from approximately 5 k-30 k and 500 k-1000 k. Based on its hydrophobicity, the NOM of the raw water was fractionated into the strong hydrophobic (SHPO), the weak hydrophobic, the strong hydrophilic and the moderately hydrophilic (MHPI) fractions. link3 The WHPO fraction caused the highest fouling compared with the other fractions under consistent experimental conditions. Meanwhile, the modified membranes showed a preference for removing the MHPI and SHPO fractions. These results imply that MWCNTs can be employed to improve the antifouling property of cellulose UF membranes and have the potential to selectively remove moderately hydrophilic contaminants from water.

Autoři článku: Weinsteindecker4125 (Mckinney Overgaard)