Websterpatterson6833

Z Iurium Wiki

Hence, we concluded that the osteogenic differentiation ability of BMSCs on the surface of TiO2 nanotubes was enhanced under the stimulation of cyclic mechanical stress, and GCN5 mediated this process through Wnt/β-catenin.Rapeseed meal (RSM) is a major by-product of oil extraction from rapeseed, consists mainly of proteins and phenolic compounds. The use of RSM as protein feedstock for microbial fermentation is always hampered by phenolic compounds, which have antioxidant property with health-promoting benefits but inhibit bacterial growth. However, there is still not any good process that simultaneously improve extraction efficiency of phenolic compounds with conversion efficiency of protein residue into microbial production. Here we established a two-step strategy including fungal pretreatment followed by extraction of phenolic compounds. This could not only increase extraction efficiency and antioxidant property of phenolic compounds by about 2-fold, but also improve conversion efficiency of protein residue into iturin A production by Bacillus amyloliquefaciens CX-20 by about 33%. The antioxidant and antibacterial activities of phenolic extracts were influenced by both total phenolic content and profile, while microbial feedstock value of residue was greatly improved because protein content was increased by ∼5% and phenolic content was decreased by ∼60%. Moreover, this two-step process resulted in isolating more proteins from RSM, bringing iturin A production to 1.95 g/L. In conclusion, high-value-added and graded utilization of phenolic extract and protein residue from RSM with zero waste is realized by a two-step strategy, which combines both benefits of fungal pretreatment and phenolic extraction procedures.A fundamental question in cartilage biology is what determines the switch between permanent cartilage found in the articular joints and transient hypertrophic cartilage that functions as a template for bone? This switch is observed both in a subset of OA patients that develop osteophytes, as well as in cell-based tissue engineering strategies for joint repair. A thorough understanding of the mechanisms regulating cell fate provides opportunities for treatment of cartilage disease and tissue engineering strategies. The objective of this study was to understand the mechanisms that regulate the switch between permanent and transient cartilage using a computational model of chondrocytes, ECHO. To investigate large signaling networks that regulate cell fate decisions, we developed the software tool ANIMO, Analysis of Networks with interactive Modeling. In ANIMO, we generated an activity network integrating 7 signal transduction pathways resulting in a network containing over 50 proteins with 200 interactions. We clage hypertrophy. We show that our model describes cartilage formation, and that model checking can aid in choosing and prioritizing combinatorial treatments that interfere with normal cartilage development. Here we show that combinatorial treatments induce changes in the zonal distribution of cartilage, indication possible switches in cell fate. This indicates that simulations in ECHO aid in describing pathologies in which switches between cell fates are observed, such as OA.As a renewable, biodegradable, and non-toxic material with moderate mechanical and thermal properties, nanocellulose-based hydrogels are receiving immense consideration for various biomedical applications. With the unique properties of excellent skeletal structure (hydrophilic functional groups) and micro-nano size (small size effect), nanocellulose can maintain the three-dimensional structure of the hydrogel to a large extent, providing mechanical strength while ensuring the moisture content. Owing to its unique features, nanocellulose-based hydrogels have made excellent progress in research and development on tissue engineering, drug carriers, wound dressings, development of synthetic organs, 3D printing, and biosensing. This review provides an overview of the synthesis of different types of nanocellulose, including cellulose nanocrystals, cellulose nanofibers, and bacterial nanocellulose, and describes their unique features. It further provides an updated knowledge of the development of nanocellulose-based functional biomaterials for various biomedical applications. Finally, it discusses the future perspective of nanocellulose-based research for its advanced biomedical applications.This study aimed to prepare microcrystalline cellulose (MCC) films with good mechanical properties via plasticization using a Chinese leek (CL, Allium tuberosum) extract. The microstructure, crystal structure, mechanical properties, barrier ability, and thermal properties of the films were investigated. The chemical structure analysis of CL extract showed the existence of cellulose, lignin, and low-molecular-weight substances, such as polysaccharides, pectins, and waxes, which could act as plasticizers to enhance the properties of MCCCL biocomposite films. The results of scanning electron microscopy and atomic force microscopy analyses indicated the good compatibility between MCC and CL extract. When the volume ratio of MCCCL was 73, the MCCCL biocomposite film exhibited the best comprehensive performance in terms of water vapor permeability (2.11 × 10-10 g/m·s·Pa), elongation at break (13.2 ± 1.8%), and tensile strength (24.7 ± 2.5 MPa). The results of a UV absorption analysis demonstrated that the addition of CL extract improved the UV-shielding performance of the films. Therefore, this work not only proposes a facile method to prepare MCC films with excellent mechanical properties via plasticization using CL extract but also broadens the potential applications of MCC films in the packaging area.Magnetic resonance imaging (MRI) can potentially be used for non-invasive screening of patients with stable angina pectoris to identify probable obstructive coronary artery disease. MRI-based coronary blood flow quantification has to date only been performed in a 2D fashion, limiting its clinical applicability. find more In this study, we propose a framework for coronary blood flow quantification using accelerated 4D flow MRI with respiratory motion correction and compressed sensing image reconstruction. We investigate its feasibility and repeatability in healthy subjects at rest. Fourteen healthy subjects received 8 times-accelerated 4D flow MRI covering the left coronary artery (LCA) with an isotropic spatial resolution of 1.0 mm3. Respiratory motion correction was performed based on 1) lung-liver navigator signal, 2) real-time monitoring of foot-head motion of the liver and LCA by a separate acquisition, and 3) rigid image registration to correct for anterior-posterior motion. Time-averaged diastolic LCA flow was de/20.3% and 0.53/27.0%, respectively). In conclusion, the proposed framework of accelerated 4D flow MRI equipped with respiratory motion correction and compressed sensing image reconstruction enables repeatable diastolic LCA flow quantification that agrees well with 2D flow MRI.Attacks with improvised explosive device (IED) constituted the main threat to, for example, Polish soldiers in Iraq and Afghanistan. Improving safety during transport in an armored vehicle has become an important issue. The main purpose of the presented research is to investigate the mechanism of lower leg injuries during explosion under an armored vehicle. Using a numerical anatomic model of the lower leg, the analysis of the leg position was carried out. In all presented positions, the stress limit of 160 (MPa) was reached, which indicates bone damage. There is a difference in stress distribution in anatomic elements pointing to different injury mechanisms.While the phenomena of reaching a goal is generally represented in the framework of optimization, the phenomena of becoming of a goal is more similar to a "self-organization and emergent" rather than an "optimization and preexisting" process. In this article we provide a modeling framework for the former alternative by representing goals as emergent autopoietic structures. In order to conceptually situate our approach, we first review some of the most remarkable attempts to formally define emergence, and identify that in most cases such definitions rely on a preexisting system to be observed prior and post emergence, being thus inadequate for a formalization of emergent goals corresponding to the becoming of a systems as such (e.g. emergence of life). Next, we review how an implementation of the reaction networks framework, known as Chemical Organization Theory (COT), can be applied to formalize autopoietic structures, providing a basis to operationalize goals as an emergent process. We next revisit the definitions of emergence under the light of our approach, and demonstrate that recent taxonomies developed to classify different forms of emergence can be naturally deduced from recent work aimed to explain the kinds of changes of the organizational structure of a reaction network.The field of 3D cell cultures is currently emerging, and material development is essential in striving toward mimicking the microenvironment of a native tissue. By using the response of reporter cells to a 3D environment, a comparison between materials can be assessed, allowing optimization of material composition and microenvironment. Of particular interest, the response can be different in a normoxic and hypoxic culturing conditions, which in turn may alter the conclusion regarding a successful recreation of the microenvironment. This study aimed at determining the role of such environments to the conclusion of a better resembling cell culture model to native tissue. Here, the breast cancer cell line MCF7 was cultured in normoxic and hypoxic conditions on patient-derived scaffolds and compared at mRNA and protein levels to cells cultured on 3D printed scaffolds, Matrigel, and conventional 2D plastics. Specifically, a wide range of mRNA targets (40), identified as being regulated upon hypoxia and traditional markers for cell traits (cancer stem cells, epithelial-mesenchymal transition, pluripotency, proliferation, and differentiation), were used together with a selection of corresponding protein targets. 3D cultured cells were vastly different to 2D cultured cells in gene expression and protein levels on the majority of the selected targets in both normoxic and hypoxic culturing conditions. By comparing Matrigel and 3DPS-cultured cells to cells cultured on patient-derived scffolds, differences were also noted along all categories of mRNA targets while specifically for the GLUT3 protein. Overall, cells cultured on patient-derived scaffolds closely resembled cells cultured on 3D printed scaffolds, contrasting 2D and Matrigel-cultured cells, regardless of a normoxic or hypoxic culturing condition. Thus, these data support the use of either a normoxic or hypoxic culturing condition in assays using native tissues as a blueprint to optimize material composition.The two major bottlenecks faced during microalgal biofuel production are, (a) higher medium cost for algal cultivation, and (b) cost-intensive and time consuming oil extraction techniques. In an effort to address these issues in the large scale set-ups, this comprehensive review article has been systematically designed and drafted to critically analyze the recent scientific reports that demonstrate the feasibility of microalgae cultivation using wastewaters in outdoor raceway ponds in the first part of the manuscript. The second part describes the possibility of bio-crude oil production directly from wet algal biomass, bypassing the energy intensive and time consuming processes like dewatering, drying and solvents utilization for biodiesel production. It is already known that microalgal drying can alone account for ∼30% of the total production costs of algal biomass to biodiesel. Therefore, this article focuses on bio-crude oil production using the hydrothermal liquefaction (HTL) process that converts the wet microalgal biomass directly to bio-crude in a rapid time period.

Autoři článku: Websterpatterson6833 (Nguyen Owens)