Weberholmes2873
Neutron diffraction measurements of H/D isotopic substitution are made at room temperature for seven H/D substituted hexafluoro-iso-propanol (HFIP; 1,1,1,3,3,3-hexafluoro-2-propanol)-water mixtures at 0.1, 0.2, and 0.4 HFIP mole fraction (xHFIP). The eight partial structure factors except for the H(CH)-H(CH) pair obtained are subjected to an empirical potential structure refinement (EPSR) method to derive all site-site pair correlation functions. It is found that with increasing HFIP concentration the ice-like network of water disappears between xHFIP = 0.1 and 0.2, followed by the formation of a chain-like water structure embedded in an intrinsic structure of HFIP evolved at xHFIP = 0.4. The hydroxyl group of HFIP forms hydrogen bonds with the surrounding water molecules at all HFIP mole fractions investigated. There is no evidence that the water structure is well defined around the CF3 groups of HFIP, but water molecules surround tangentially the CF3 groups of HFIP.With recent experimental advances in laser-driven electron dynamics in polyatomic molecules, the need arises for their reliable theoretical modelling. Among efficient, yet fairly accurate methods for many-electron dynamics are Time-Dependent Configuration Interaction Singles (TD-CIS) (a Wave Function Theory (WFT) method), and Real-Time Time-Dependent Density Functional Theory (RT-TD-DFT), respectively. Here we compare TD-CIS combined with extended Atomic Orbital (AO) bases, TD-CIS/AO, with RT-TD-DFT in a grid representation of the Kohn-Sham orbitals, RT-TD-DFT/Grid. Possible ionization losses are treated by complex absorbing potentials in energy space (for TD-CIS/AO) or real space (for RT-TD-DFT), respectively. The comparison is made for two test cases (i) state-to-state transitions using resonant lasers (π-pulses), i.e., bound electron motion, and (ii) large-amplitude electron motion leading to High Harmonic Generation (HHG). Test systems are a H2 molecule and cis- and trans-1,2-dichlorethene, C2H2Cl2, (DCE). From time-dependent electronic energies, dipole moments and from HHG spectra, the following observations are made first, for bound state-to-state transitions enforced by π-pulses, TD-CIS nicely accounts for the expected population inversion in contrast to RT-TD-DFT, in agreement with earlier findings. Secondly, when using laser pulses under non-resonant conditions, dipole moments and lower harmonics in HHG spectra are obtained by TD-CIS/AO which are in good agreement with those obtained with RT-TD-DFT/Grid. Deviations become larger for higher harmonics and at low laser intensities, i.e., for low-intensity HHG signals. We also carefully test effects of basis sets for TD-CIS/AO and grid size for RT-TD-DFT/Grid, different exchange-correlation functionals in RT-TD-DFT, and absorbing boundaries. Finally, for the present examples, TD-CIS/AO is observed to be at least an order of magnitude more computationally efficient than RT-TD-DFT/Grid.Trihydroxyphenyl porphyrin (POH3) was designed to specifically bind with a triplex DNA resulting in a turn-on fluorescence response. This ensemble can be developed into a catalytic triplex DNAzyme towards porphyrin metalation. The catalytic activity is initiated by the enhanced basicity of POH3 upon binding with the triplex DNA.The N-alkylation of diketopyrrolopyrroles (DPPs) represents a fundamental step to ensure solubility and further processability. Commonly used nucleophilic substitution in halogenated derivatives is replaced in this work by the Mitsunobu reaction affording unprecedented DPPs with α-branched and chiral chains.Piper betle leaves possess several ethnomedicinal properties and are immensely used in traditional medicinal practices in regions of Asian and African subcontinents. However, their effects in treating skeletal complications are least known. In this study, we evaluated cellular and molecular effects of betel leaf extract (BLE) and its major phytoconstituent, hydroxychavicol (HCV) in promoting osteogenesis in vitro and alleviating glucocorticoid induced osteoporosis (GIO) in vivo. Both BLE and HCV markedly stimulated osteoblast differentiation of C3H10T1/2 cells with increased expression of RUNX2 and osteopontin through the GSK-3β/β-catenin-signaling pathway. Also, oral administration of BLE and HCV in GIO rats resulted in restoration of bone mass and tissue microarchitecture. Thus, with our findings we conclude that BLE and HCV promote osteogenesis of C3H10T1/2 cells via the GSK-3β/β-catenin pathway and alleviate GIO in rats.Imidazolium-based cations and the hexafluorophosphate anion are among the most commonly used ionic liquids (ILs). Yet, the nature and strength of the intrinsic cation-anion interactions, and how they influence the macroscopic properties of these ILs are still not well understood. Threshold collision-induced dissociation is utilized to determine the bond dissociation energies (BDEs) of the 2 1 clusters of 1-alkyl-3-methylimidazolium cations and the hexafluorophosphate anion, [2CnmimPF6]+. The cation, [Cnmim]+, is varied across the series, 1-ethyl-3-methylimidazolium [C2mim]+, 1-butyl-3-methylimidazolium [C4mim]+, 1-hexyl-3-methylimidazolium [C6mim]+, 1-octyl-3-methylimidazolium [C8mim]+, to examine the structural and energetic effects of the size of the 1-alkyl substituent of the cation on the binding to [PF6]-. Complementary electronic structure methods are employed for the [Cnmim]+ cations, (CnmimPF6) ion pairs, and [2CnmimPF6]+ clusters to elucidate details of the cation-anion interactions and their impact on structure and energetics. Multiple levels of theory are benchmarked with the measured BDEs including B3LYP, B3LYP-GD3BJ, and M06-2X each with the 6-311+G(d,p) basis set for geometry optimizations and frequency analyses and the 6-311+G(2d,2p) basis set for energetic determinations. The modest structural variation among the [Cnmim]+ cations produces only minor structural changes and variation in the measured BDEs of the [2CnmimPF6]+ clusters. Present results are compared to those previously reported for the analogous 1-alkyl-3-methylimidazolium tetrafluoroborate IL clusters to compare the effects of these anions on the nature and strength of the intrinsic binding interactions.A novel electron-deficient macrocycle, pillar[6]quinone (P[Q]6), has been synthesized for the first time by both chemical and electrochemical oxidation of pillar[6]arene, showing clear hexagonal columnar stacking in the solid state. Cathodic voltammetric studies of P[Q]6 revealed that three electrons are injected first, followed by stepwise one-electron reductions.A zwitterionic polymer-drug conjugate (ZPDC) strategy is developed for the co-delivery of paclitaxel (PTX) and gemcitabine (GEM) chemotherapeutics, as well as a near-infrared fluorescence imaging agent cyanine5.5 (Cy5.5). The well-defined ZPDC is synthesized by tandem azide-alkyne and thiol-ene click functionalization of a biodegradable acetylenyl/allyl-functionalized polylactide and zwitterionic character is conferred by sulfobetaine. It has a number-average molecular weight of 53.6 kDa, comprising 6.5% PTX and 17.7% GEM by weight. Cy5.5 moieties are readily introduced to the ZPDC via conjugation. In aqueous solutions, the ZPDC exhibits a hydrodynamic diameter of 46 nm. In vitro MIA PaCa-2 human pancreatic cancer cells show strong ZPDC cellular uptake and cytotoxicity. In mice, the ZPDC exhibits long blood circulation, effective tumor accumulation, biocompatibility, therapeutic effect, and integrated imaging capacity. Overall, this work illustrates that ZPDCs are promising systems for chemotherapy delivery and bioimaging applications.The rapid development of nanotechnology has placed a higher demand on the synthesis of nanomaterials. Benefiting from its capability to keep nanoparticles away from aggregation, oleic acid (OA) has been routinely utilized as a capping agent in the synthesis of monodisperse nanocrystals. To satisfy downstream biological applications, hydrophobic OA capping on the surface should be removed or coated, but scarce attention has been paid to its influence on the optical properties of nanocrystals. In this work, the effect of surface-capping OA has been systematically explored on the optical properties of lanthanide-doped upconversion and downshifting nanocrystals, respectively. The emission intensity and lifetime of emissive lanthanides have been compared between OA-capped and ligand-free nanocrystals either in solid state or in colloidal solution. In solid state, surface-capping OA can significantly influence both emission intensity and radiative transition possibility of emissive lanthanides. However, in colloidal solution, a distinct variation between OA-capped and ligand-free nanocrystals is observed. Besides, the effect of OA on the luminescence dynamics of lanthanides with different energy gaps (emitting level to the next-lower-energy level) has been investigated in colloidal solution. The possible mechanism for the effect of OA on the optical properties of lanthanide-doped nanocrystals has been further proposed.Measurements of the decay of electric fields, formed spontaneously within vapour-deposited films of cis-methyl formate, provide the first direct assessment of the energy barrier to secondary relaxation in a molecular glass. Epigenetic inhibitor research buy At temperatures far below the glass transition temperature, the mechanism of relaxation is shown to be through hindered molecular rotation. Magnetically-polarised neutron scattering experiments exclude diffusion, which is demonstrated to take place only close to the glass transition temperature.A closed bipolar electrode (BPE) based fluorescence visualization biosensor was successfully constructed and used for anti-interference detection of T-2 toxin.By utilizing hydrazine (N2H4) as the nitrogen source in the presence of a hydroxyapatite-supported Pd nanoparticle catalyst (Pd/HAP), various primary anilines can be selectively synthesized from cyclohexanones via acceptorless dehydrogenative aromatization. The strong nucleophilicity of N2H4 and the stability of the hydrazone intermediates can effectively suppress the formation of the undesired secondary aniline byproducts.We applied a new in silico approach for using protease-substrate motifs to design a kallikrein 7 (KLK7)-specific phosphonate activity-based probe (ABP) to quantify the active KLK7 in situ. Epidermal application of the ABP-inhibitor on Spink5-/-Klk5-/- mice, a Netherton syndrome model, reversed disease hallmarks, providing preclinical proof-of-concept for using ABPs as theranostics.Heterogeneous stationary phase chemistry causes chromatographic tailing that lowers separation efficiency and complicates optimizing mobile phase conditions. Model-free metrics are attractive for assessing optimal separation conditions due to the low quantity of information required, but often do not reveal underlying mechanisms that cause tailing, for example, heterogeneous retention modes. We report a new metric, which we call the Distribution Function Ratio (DFR), based on a graphical comparison between the chromatogram and Gaussian cumulative distribution functions, achieving correspondence to ground truth surface dynamics with a single chromatogram. Using a Monte Carlo framework, we show that the DFR can predict the prevalence of heterogeneous retention modes with high precision when the relative desorption rate between modes is known, as in during surface dynamics experiments. Ground truth comparisons reveal that the DFR outperforms both the asymmetry factor and skewness by yielding a one-to-one correspondence with heterogeneous retention mode prevalence over a broad range of experimentally realistic values.