Weaverphelps0310

Z Iurium Wiki

Globally, traditional food security fears have been supplemented by concerns about food system sustainability that link current agricultural production practices to damages of environmental ecosystems and the world's climate, thus threatening the natural resource base of future generations. This paper aims at creating a better understanding of the evolution of diet sustainability from 1961 to 2013. Data from the Food and Agriculture Organization of the United Nations were used to investigate the situation for the world as a whole as well as for its macro-regions Africa, Asia, the Americas, Europe and Oceania. We define diet sustainability by (a) the share of daily per capita calorie intake derived from vegetable/plant products and (b) the variety of vegetable/plant products consumed, measured by the Simpson diversity index. Moreover, total calorie consumption is considered. Then the correlations between diet sustainability and (a) macro-regional life expectancy rates and (b) food system greenhouse gas emissions are calculated. The results show that diet sustainability has not changed much during the last 50 years. Moreover, the nexus between diets and health and climate outcomes is not fully evident at the macro-regional level. Therefore, Malthus 2.0, i.e., scientific food pessimism, should be avoided. In particular, the limitations of dietary contributions to human and planetary health ought to be more widely acknowledged.In mammals Homer1, Homer2 and Homer3 constitute a family of scaffolding proteins with key roles in Ca2+ signaling and Ca2+ transport. In rodents, Homer proteins and mRNAs have been shown to be expressed in various postnatal tissues and to be enriched in brain. However, whether the Homers are expressed in developing tissues is hitherto largely unknown. In this work, we used immunohistochemistry and in situ hybridization to analyze the expression patterns of Homer1, Homer2 and Homer3 in developing cephalic structures. Our study revealed that the three Homer proteins and their encoding genes are expressed in a wide range of developing tissues and organs, including the brain, tooth, eye, cochlea, salivary glands, olfactory and respiratory mucosae, bone and taste buds. We show that although overall the three Homers exhibit overlapping distribution patterns, the proteins localize at distinct subcellular domains in several cell types, that in both undifferentiated and differentiated cells Homer proteins are concentrated in puncta and that the vascular endothelium is enriched with Homer3 mRNA and protein. Our findings suggest that Homer proteins may have differential and overlapping functions and are expected to be of value for future research aiming at deciphering the roles of Homer proteins during embryonic development.The relationship between health and migration has always been an important theme in immigration research. This research develops a new approach to test the healthy migrant hypothesis and the salmon bias hypothesis in China by examining an interaction term combining agricultural hukou and migrant status, non-agricultural employment history, and subsequent area of residence. Based on two Chinese micro-databases, CGSS 2015 and Harmonized CHARLS, we conducted an empirical test on the relationship between migration and health. Our empirical evidence suggests that the initial health advantage among Chinese rural migrant workers was largely due to self-selection rather than migration effects. After controlling for demographic and socioeconomic characteristics, this advantage disappeared. After their health deteriorated, migrant workers returned to their original location. This could exacerbate the contradiction between the allocation of medical resources and the demand in rural and urban China, further intensifying the already widening health status gap between rural and urban residents.Prostate cancer is one of the leading causes of cancer mortality in men worldwide. An unusual but unique environment for studying tumor cell processes is provided by microgravity, either in space or simulated by ground-based devices like a random positioning machine (RPM). In this study, prostate adenocarcinoma-derived PC-3 cells were cultivated on an RPM for time periods of 3 and 5 days. We investigated the genes associated with the cytoskeleton, focal adhesions, extracellular matrix, growth, survival, angiogenesis, and metastasis. The gene expression of signaling factors of the vascular endothelial growth factor (VEGF), mitogen-activated protein kinase (MAPK), and PI3K/AKT/mTOR (PAM) pathways was investigated using qPCR. We performed immunofluorescence to study the cytoskeleton, histological staining to examine the morphology, and a time-resolved immunofluorometric assay to analyze the cell culture supernatants. When PC-3 cells were exposed to simulated microgravity (s-µg), some cells remained growing as adskeletal alterations (F-actin) were visible, as well as a deposition of collagen in the MCS. In conclusion, RPM-exposure of PC-3 cells induced changes in their morphology, cytoskeleton, and extracellular matrix protein synthesis, as well as in their focal adhesion complex and growth behavior. The significant upregulation of genes belonging to the PAM pathway indicated their involvement in the cellular changes occurring in microgravity.Bacterial nanocellulose (BNC) membranes have enormous potential as systems for topical drug delivery due to their intrinsic biocompatibility and three-dimensional nanoporous structure, which can house all kinds of active pharmaceutical ingredients (APIs). Thus, the present study investigated the long-term storage stability of BNC membranes loaded with both hydrophilic and lipophilic APIs, namely, caffeine, lidocaine, ibuprofen and diclofenac. read more The storage stability was evaluated under accelerated testing conditions at different temperatures and relative humidity (RH), i.e., 75% RH/40 °C, 60% RH/25 °C and 0% RH/40 °C. All systems were quite stable under these storage conditions with no significant structural and morphological changes or variations in the drug release profile. The only difference observed was in the moisture-uptake, which increased with RH due to the hydrophilic nature of BNC. Furthermore, the caffeine-loaded BNC membrane was selected for in vivo cutaneous compatibility studies, where patches were applied in the volar forearm of twenty volunteers for 24 h. The cutaneous responses were assessed by non-invasive measurements and the tests revealed good compatibility for caffeine-loaded BNC membranes. These results highlight the good storage stability of the API-loaded BNC membranes and their cutaneous compatibility, which confirms the real potential of these dermal delivery systems.Early cow-calf separation management induced various welfare problems for dairy calves. We mimicked the maternal licking by manually brushing right after the Holstein female calves were born and during their first week of life, termed artificial grooming (AG). The behavior of these treated calves (AG, n = 17) was compared with the calves without artificial grooming (Con, n = 16) during daily behavioral observation around evening milk feeding and in the open field test (OFT) and novel human test (NHT). The number of calves ingesting starter on day six was recorded. The AG calves were observed to be more active and perform more oral behavior compared with the Con calves around evening milk feeding. In the OFT and NHT, the AG calves were again more active than the Con calves. Moreover, the AG calves tended to be less cautious and had more human interactions than the Con calves in the NHT. There tended to be a higher percentage of AG calves ingesting starter on day 6. link2 In conclusion, artificial grooming during early life could boost the activity and the human affinity of female calves and it might advance their starter diet ingestion.Background Irisin, a novel exercise-induced myokine, was shown to mediate beneficial effects of exercise in osteoporosis. Microgravity is a major threat to bone homeostasis of astronauts during long-term spaceflight, which results in decreased bone formation. Methods The hind-limb unloading mice model and a random position machine are respectively used to simulate microgravity in vivo and in vitro. Results We demonstrate that not only are bone formation and osteoblast differentiation decreased, but the expression of fibronectin type III domain-containing 5 (Fdnc5; irisin precursor) is also downregulated under simulated microgravity. Moreover, a lower dose of recombinant irisin (r-irisin) (1 nM) promotes osteogenic marker gene (alkaline phosphatase (Alp), collagen type 1 alpha-1(ColIα1)) expressions, ALP activity, and calcium deposition in primary osteoblasts, with no significant effect on osteoblast proliferation. Furthermore, r-irisin could recover the decrease in osteoblast differentiation induced by simulated microgravity. We also find that r-irisin increases β-catenin expression and partly neutralizes the decrease in β-catenin expression induced by simulated microgravity. In addition, β-catenin overexpression could also in part attenuate osteoblast differentiation reduction induced by simulated microgravity. Conclusions The present study is the first to show that r-irisin positively regulates osteoblast differentiation under simulated microgravity through increasing β-catenin expression, which may reveal a novel mechanism, and it provides a prevention strategy for bone loss and muscle atrophy induced by microgravity.Mucopolysaccharidosis type II (MPS II, Hunter syndrome) was first described by Dr. Charles Hunter in 1917. Since then, about one hundred years have passed and Hunter syndrome, although at first neglected for a few decades and afterwards mistaken for a long time for the similar disorder Hurler syndrome, has been clearly distinguished as a specific disease since 1978, when the distinct genetic causes of the two disorders were finally identified. MPS II is a rare genetic disorder, recently described as presenting an incidence rate ranging from 0.38 to 1.09 per 100,000 live male births, and it is the only X-linked-inherited mucopolysaccharidosis. link3 The complex disease is due to a deficit of the lysosomal hydrolase iduronate 2-sulphatase, which is a crucial enzyme in the stepwise degradation of heparan and dermatan sulphate. This contributes to a heavy clinical phenotype involving most organ-systems, including the brain, in at least two-thirds of cases. In this review, we will summarize the history of the disease during this century through clinical and laboratory evaluations that allowed its definition, its correct diagnosis, a partial comprehension of its pathogenesis, and the proposition of therapeutic protocols. We will also highlight the main open issues related to the possible inclusion of MPS II in newborn screenings, the comprehension of brain pathogenesis, and treatment of the neurological compartment.Mesenchymal stem cells (MSCs) are considered as promising therapeutic agents for neurodegenerative disorders because they can reduce underlying pathology and also repair damaged tissues. Regarding the delivery of MSCs into the brain, intravenous and intra-arterial routes may be less feasible than intraparenchymal and intracerebroventricular routes due to the blood-brain barrier. Compared to the intraparenchymal or intracerebroventricular routes, however, the intrathecal route may have advantages this route can deliver MSCs throughout the entire neuraxis and it is less invasive since brain surgery is not required. The objective of this study was to investigate the distribution of human Wharton's jelly-derived MSCs (WJ-MSCs) injected via the intrathecal route in a rat model. WJ-MSCs (1 × 106) were intrathecally injected via the L2-3 intervertebral space in 6-week-old Sprague Dawley rats. These rats were then sacrificed at varying time points 0, 6, and 12 h following injection. At 12 h, a significant number of MSCs were detected in the brain but not in other organs.

Autoři článku: Weaverphelps0310 (Bengtsson Bertram)