Weaverdanielsen4593
Multiple correspondence analyses reveal two clusters of high and low Li concentrations. Li distributions in marine organisms appear to be mostly geographically independent, though our results highlight a temperature dependency in fish muscles. Li is consistently bio-reduced through the trophic webs, with filter-feeders showing the highest concentrations and predatory fish the lowest. Strong variations are observed among organs, consistent with the biochemical similarity between Na and Li during transport in the brain and in osmoregulatory organs. Fish gills and kidneys show relatively high Li concentrations (0.26 and 0.15 μg/g, respectively) and fish brains show a large range of Li contents (up to 0.34 μg/g), whereas fish liver and muscles are Li depleted (0.07 ± 0.03 and 0.06 ± 0.08 μg/g, respectively). Altogether, these results provide the first exhaustive baseline for future Li ecotoxicology studies in marine coastal environments.Although the environmental impacts of metal atmospheric emissions from point sources such as smelter have been extensively studied, very few studies have attempted to understand the influence of those emissions on nutrient cycles in the surrounding forests. This study investigates nutrient variations in space and time along with trace metals by statistical analysis of tree-ring series combined with the characterization of element concentrations in soil horizons. The research focuses on the Horne smelter (Rouyn Noranda, Québec, Canada), because it released high atmospheric emissions of metals and gases between 1928 and 1990s. Tree-ring Sr/Mn ratios, and Mn and Sr z-score series reveal that surface soil pH recovered progressively within the 45 km footprint of the smelter since the end of acidic deposition in the late 1970s. The influence of acidic deposition on the current soil pH has become negligible. In other words, element bioavailability and root assimilation have changed through time due to soil acidification at proximal sites. The detrended tree-ring elemental series during the last century also suggest that summer temperatures partly control the elemental bioavailability to trees in soils. Moreover, tree-ring Zn and Mg series appear as key environmental indicators of metal deposition from the smelter. This research confirms previous findings indicating that elemental concentrations in black and white spruce trees may be used to evaluate the potential influence of smelter emissions on nutrient cycles. For a future informed and adaptive management of forests, understanding the potential modifications of nutrient regimes caused by anthropogenic contaminations is critical, especially in the context of global warming.To address the adverse effects of harmful algal blooms, there are increased demands over the implementation of ozone coupled with biologically active carbon (BAC) filters in the drinking water treatment plants. Although the microbial biofilms are vital elements to support the proper performance of BAC filters, except for taxonomic affiliations, little is known about the assembly mechanisms of microbial communities in the full-scale BAC filters. This study aimed to examine how the assembly processes and their associated factors (e.g., influent characteristics, biological interactions) drive the temporal dynamics of bacterial communities in full-scale BAC filters, which underwent ozone implementation (five consecutive seasons from 2017 to 2018). The results revealed that along with the increase of bacterial taxonomic richness and evenness, stochastic processes became more crucial to determine the bacterial community assembly in the summer and autumn after ozone implementation (relative contribution 61.23% and 83.75%, respectively). Moreover, their corresponding networks possessed simple network structures with lower modularity than other seasons, which implied lesser biological interactions among bacterial populations. The correlation between taxonomic and predicted functional diversities using functional redundancy index indicated that relatively high levels of bacterial functional redundancy (>0.83) were generally present in BAC filters. However, compared to other seasons, significantly higher degrees of functional redundancy existed in the summer and autumn after ozone implementation (0.85 ± 0.01 and 0.86 ± 0.01, respectively). Overall, this work improves our understanding of the microbial ecology of full-scale BAC filters by providing a conceptual framework that characterizes bacterial biofilm assembly processes relevant to performance optimization of full-scale BAC filters.Pharmaceutically active compounds (PhACs) are ubiquitous in the aquatic environment worldwide and considered emerging contaminants. Their effects on growth, behavior, and physiological processes of aquatic organisms have been identified even at very low concentrations. Ecotoxicological investigations have primarily focused on single compound exposure, generally at a range of concentrations. In the natural environment, pollutants seldom occur in isolation, but little is known about the effects and risks of combinations of chemicals. This study aimed to investigate the effects of concurrent exposure to six psychoactive PhACs on locomotory behavior and life history traits of clonal marbled crayfish Procambarus virginalis. Crayfish were exposed to ~1 μg L-1 of the antidepressants sertraline, citalopram, and venlafaxine; the anxiolytic oxazepam; the opioid tramadol; and the widely abused psychostimulant methamphetamine. In the absence of shelter, exposed crayfish moved significantly shorter distances and at lower velocity and showed significantly less activity than controls. With available shelter, exposed crayfish moved significantly more distance, showed higher activity, and spent a significantly more time outside the shelter than controls. Molting, mortality, and spawning frequency did not vary significantly between the groups. 3-MA order Hemolymph glucose level did not vary among groups and was not correlated with observed behaviors. Results suggest that environmental concentrations of the tested compounds in combination can alter the behavior of non-target aquatic organisms as individual exposure of these compounds, which may lead to disruption of ecosystem processes due to their reduced caution in polluted conditions. Further research is needed using varied chemical mixtures, exposure systems, and habitats, considering molecular and physiological processes connected to behavior alterations.