Watsonaguirre1065
In addition, lots of thermophilic genera (i.e., Synedra, Nitzschia, and Navicula) were detected at sampling station 1 (Spt1) and sampling station 2 (Spt2) where the effect of thermal discharge was the most obvious. The increase in biomass and cell count of Bacillariophyta was the result of thermal effect, especially in cold season. Besides, consequences also revealed some environmental parameters (i.e., dissolved oxygen concentration, chlorophyll a concentration, and transparency) were affected by the thermal discharge. UNC3866 Chlorophyll a concentration exhibited a slow rising trend while dissolved oxygen concentration and transparency gradually decreased.Freight emissions management has entered the deep-water zone. This study evaluated road freight emissions from supply chain perspective using China's 2007, 2010 and 2012 multiregional input-output table. For the first time, we quantified road freight emission based on sectors in China. Heavy industries, mining, agriculture and light industry contributed 71%,14%, 12% and 3% of total NOx emissions in 2012 from production perspective. Construction was the largest consumption sector (43%) responsible for road freight emission from consumption perspective. Upstream transport and final product transport emitted 3.04 Tg (80%) and 0.77 Tg (20%) NOx in 2012. Huge disparities of road freight emissions flows and allocation patterns were found across provinces in China in terms of resource endowments, geographical position and economic development. The road freight emission increased rapidly from 2007 to 2012, and economic growth effect outpaced emission control effect caused by emission standard upgrade and thus dominated the emission growth. The production structure and consumption pattern changes also promoted the emission growth. It is thus important to mitigate freight emissions with different strategies based on a certain sector's freight emissions features from the whole supply chain.Humans benefit from nuclear technologies but consequently experience nuclear disasters or side effects of iatrogenic radiation. Hematopoietic system injury first arises upon radiation exposure. As an intricate new layer of genetic control, the posttranscriptional m6A modification of RNA has recently come under investigation and has been demonstrated to play pivotal roles in multiple physiological and pathological processes. However, how the m6A methylome functions in the hematopoietic system after irradiation remains ambiguous. Here, we uncovered the time-varying epitranscriptome-wide m6A methylome and transcriptome alterations in γ-ray-exposed mouse bone marrow. 4 Gy γ-irradiation rapidly (5 min and 2 h) and severely impaired the mouse hematopoietic system, including spleen and thymus weight, blood components, tissue inflammation and malondialdehyde (MDA) levels. The m6A content and expression of m6A related enzymes were altered. Gamma-irradiation triggered dynamic and reversible m6A modification profiles and altered mRNA expression, where both m6A fold-enrichment and mRNA expression most followed the (5 min_up/2 h_down) pattern. The CDS enrichment region preferentially upregulated m6A peaks at 5 min. Moreover, the main GO and KEGG pathways were closely related to metabolism and the classical radiation response. Finally, m6A modifications correlated with transcriptional regulation of genes in multiple aspects. Blocking the expression of m6A demethylases FTO and ALKBH5 mitigated radiation hematopoietic toxicity. Together, our findings present the comprehensive landscape of mRNA m6A methylation in the mouse hematopoietic system in response to γ-irradiation, shedding light on the significance of m6A modifications in mammalian radiobiology. Regulation of the epitranscriptome may be exploited as a strategy against radiation damage.Soil trace elements (TEs) contamination has become a worldwide problem in arable lands and poses great risk to human health via food chain. Intercropping of hyperaccumulator and cash crops is now proposed as a promising alternative phytoremediation technique to address the issue. However, the effect of intercropping in different soil types and field-scale benefits evaluation are rarely reported. A greenhouse pot experiment and a field trial were therefore designed to explore the effects of intercropping Sedum alfredii (hyperaccumulative population) and oilseed rape on Cd phytoextraction potential, Cd transport and crop production, as well as establishing a feasible assessment framework on the basis of benefits evaluation in contaminated soils. Compared with oilseed rape monoculture, intercropping with S. alfredii significantly and consistently increased biomass, seed yield and Cd accumulation in oilseed rape in five typical soil types. Accumulations of Cd varied with soil types, ranging from 22.8 to 4000 μg pot-1. Stepwise multiple linear regression analysis (SMLRA) showed Cd concentrations in plants were related to available phosphorus (AP), pH, soil organic matter (OM), available potassium (AK), silt and sand; R2 values varied from 0.834 to 0.994 (P less then 0.05). A field trial also verified that intercropping could significantly enhance Cd phytoextraction. The highest index for comprehensive benefits evaluation was 0.61 observed in the S. alfredii and oilseed rape intercropping system. This system presented higher Cd phytoextraction potential and comprehensive benefits index whilst allowing ongoing agricultural activities in slightly and moderately Cd-contaminated soils. These results provide a possible technical approach for phytoremediation practice and give new insights into theoretical reference for development of Cd phytoextraction and benefits evaluation.Biodiversity loss is often an important driver of the deterioration of ecosystem functioning in freshwater ecosystems. However, it is far from clear how multiple ecosystem functions (i.e., ecosystem multifunctionality, EMF) relate to biodiversity across the benthic-pelagic habitats of entire ecosystems or how environmental stress such as eutrophication and heavy metals enrichment might regulate the biodiversity-EMF relationships. Here, we explored the biodiversity and EMF across benthic-pelagic habitats of the large eutrophic Lake Taihu in China, and further examined abiotic factors underlying the spatial variations in EMF and its relationships with biodiversity. In our results, EMF consistently showed positive relationships to the biodiversity of multiple taxonomic groups, such as benthic bacteria, bacterioplankton and phytoplankton. Both sediment heavy metals and total phosphorus significantly explained the spatial variations in the EMF, whereas the former were more important than the latter. Further, sediment heavy metals mediated EMF through the diversity of benthic bacteria and bacterioplankton, while nutrients such as phosphorus in both the sediments and overlaying water altered EMF via phytoplankton diversity. This indicates the importance of pollution in regulating the relationships between biodiversity and EMF in freshwater environments. Our findings provide evidence that freshwater biodiversity loss among phytoplankton and bacteria will likely weaken ecosystem functioning. Our results further suggest that abiotic factors such as heavy metals, beyond nutrient enrichment, may provide relatively earlier signals of impaired ecosystem functioning during eutrophication process.Identification of pollution point source in rivers is strenuous due to accidental chemical spills or unmanaged wastewater discharges. It is crucial to take physical characteristics into account in the estimation of pollution sources. In this study, an integrated inverse modeling framework is developed to identify a point source of accidental water pollution based on the contaminant concentrations observed at monitoring sites in time series. The modeling approach includes a Markov chain Monte Carlo method based on Bayesian inference (Bayesian-MCMC) inverse model and a genetic algorithm (GA) inverse model. Both inverse models can estimate the pollution sources, including the emission mass quantity, release time, and release position in an accidental river pollution event. The developed model is first tested for a hypothetical case with field river conditions. The results show that the source parameters identified by the Bayesian-MCMC inverse model are very close to the true values with relative errors of 0.02% or less; the GA inverse model also works with relative errors in the range of 2%-7%. Additionally, the uncertainties associated with model parameters are analyzed based on global sensitive analysis (GSA) in this study. It is also found that the emission mass of pollution source positively correlates with the dispersion coefficient and the river cross-sectional area, whereas the flow velocity significantly affects release position and release time. A real case study in the Fen River is further conducted to test the applicability of the developed inverse modeling approach. Results confirm that the Bayesian-MCMC model performs better than the GA model in terms of accuracy and stability for the field application. The findings of this study would support decision-making during emergency responses to river pollution incidents.The utility of metal-organic frameworks (MOFs) such as the CUK family (CUK - Cambridge University-KRICT) has been explored intensively for adsorption/separation of airborne volatile organic compounds (VOCs). In this article, three M-CUK analogs (M = Mg, Co, or Ni) were synthesized hydrothermally under similar conditions to assess the effects of their isostructural properties and metal centers on adsorption of benzene vapor (0.05-1 Pa). A list of performance metrics (e.g., breakthrough volume (BTV) and partition coefficient (PC)) were used to assess the role of the metal type (in M-CUK-1s) in the adsorption of VOCs. Specifically, Co-CUK-1 (average pore size of 8.98 nm) showed 2-3 times greater performance (e.g., in terms of 10% BTV (2012 L atm g-1) and PC (6 mol kg-1 Pa-1)) over other analogs when exposed up to 0.05 Pa benzene vapor. The superiority of mesoporous Co-CUK-1 (e.g., enhanced adsorption diffusion mechanism through favorable metal-π and π- π interactions) can be attributed to the presence of cobalt metal centers (e.g., in reference to Mg- or Ni-CUK-1).Anthropogenic environmental change poses a special threat to species in which genetic sex determination can be overwritten by the thermal and chemical environment. Endocrine disrupting chemicals as well as extreme temperatures can induce sex reversal in such species, with potentially wide-ranging consequences for fitness, demography, population viability and evolution. Despite accumulating evidence suggesting that chemical and thermal effects may interact in ecological contexts, little is known about their combined effects on sex reversal. Here we assessed the simultaneous effects of high temperature (female-to-male sex-reversing agent) and 17α-ethinylestradiol (EE2), a widespread xenoestrogen (male-to-female sex-reversing agent), on sexual development and fitness-related traits in agile frogs (Rana dalmatina). We exposed tadpoles to a six-days heat wave (30 °C) and/or an ecologically relevant concentration of EE2 (30 ng/L) in one of three consecutive larval periods, and diagnosed sex reversals two months after metamorphosis using species-specific markers for genetic sexing.