Warmingolsen9703

Z Iurium Wiki

The ambient-pressure endstation and branchline of the Versatile Soft X-ray (VerSoX) beamline B07 at Diamond Light Source serves a very diverse user community studying heterogeneous catalysts, pharmaceuticals and biomaterials under realistic conditions, liquids and ices, and novel electronic, photonic and battery materials. The instrument facilitates studies of the near-surface chemical composition, electronic and geometric structure of a variety of samples using X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy in the photon energy range from 170 eV to 2800 eV. The beamline provides a resolving power hν/Δ(hν) > 5000 at a photon flux > 1010 photons s-1 over most of its energy range. By operating the optical elements in a low-pressure oxygen atmosphere, carbon contamination can be almost completely eliminated, which makes the beamline particularly suitable for carbon K-edge NEXAFS. The endstation can be operated at pressures up to 100 mbar, whereby XPS can be routinely performed up to 30 mbar. A selection of typical data demonstrates the capability of the instrument to analyse details of the surface composition of solid samples under ambient-pressure conditions using XPS and NEXAFS. In addition, it offers a convenient way of analysing the gas phase through X-ray absorption spectroscopy. Short XPS spectra can be measured at a time scale of tens of seconds. The shortest data acquisition times for NEXAFS are around 0.5 s per data point.A realistic wave optics simulation method has been developed to study how wavefront distortions originating from heat load deformations can be corrected using adaptive X-ray optics. Several planned soft X-ray and tender X-ray insertion-device beamlines in the Advanced Light Source upgrade rely on a common design principle. A flat, first mirror intercepts the white beam; vertical focusing is provided by a variable-line-space monochromator; and horizontal focusing comes from a single, pre-figured, adaptive mirror. A variety of scenarios to cope with thermal distortion in the first mirror are studied by finite-element analysis. The degradation of the intensity distribution at the focal plane is analyzed and the adaptive optics that correct it is modeled. The range of correctable wavefront errors across the operating range of the beamlines is reported in terms of mirror curvature and spatial frequencies. The software developed is a one-dimensional wavefront propagation package made available in the OASYS suite, an adaptable, customizable and efficient beamline modeling platform.This paper presents a novel cantilevered liquid-nitrogen-cooled silicon mirror design for the first optic in a new soft X-ray beamline that is being developed as part of the Advanced Light Source Upgrade (ALS-U) (Lawrence Berkeley National Laboratory, USA). The beamline is optimized for photon energies between 400 and 1400 eV with full polarization control. Calculations indicate that, without correction, this design will achieve a Strehl ratio greater than 0.85 for the entire energy and polarization ranges of the beamline. With a correction achieved by moving the focus 7.5 mm upstream, the minimum Strehl ratio is 0.99. This design is currently the baseline plan for all new ALS-U insertion device beamlines.Modern subtractive and additive manufacturing techniques present new avenues for X-ray optics with complex shapes and patterns. Refractive phase plates acting as glasses for X-ray optics have been fabricated, and spherical aberration in refractive X-ray lenses made from beryllium has been successfully corrected. A diamond phase plate made by femtosecond laser ablation was found to improve the Strehl ratio of a lens stack with a numerical aperture (NA) of 0.88 × 10-3 at 8.2 keV from 0.1 to 0.7. A polymer phase plate made by additive printing achieved an increase in the Strehl ratio of a lens stack at 35 keV with NA of 0.18 × 10-3 from 0.15 to 0.89, demonstrating diffraction-limited nanofocusing at high X-ray energies.The OASYS suite and its powerful integration features are used to implement a ray-tracing algorithm to accurately calculate the thermal load in any component of an undulator-based synchrotron beamline. This is achieved by sampling and converting the SRW source of a given energy into a Shadow source and using the latter code to ray trace the full beamline. The accuracy of the algorithm is proved by reconstructing the full undulator radiation distribution through an aperture and comparing the result with direct calculaton of the total power using SRW. Etrumadenant Adenosine Receptor antagonist The algorithm is particularly suited to analyze cases with complex beamline layouts and optical elements, such as crystals, multilayers, and compound refractive lenses. Examples of its use to calculate the power load on elements of two of the feature beamlines at the Advanced Photon Source Upgrade Project and a comparison of the results with analytical calculations are presented.A focusing optics that can provide a sub-micrometre high-flux probe for soft X-ray micrometre-scale angle-resolved photoemission spectroscopy (ARPES) is proposed. A monolithic Wolter-type mirror with a large acceptance, achromatism and small comatic aberration was designed and evaluated. A focused beam size of 0.4 µm (vertical) × 4 µm (horizontal), a high throughput of 59% and a high tolerance of 1.6 mrad to the pitching error were realized at a photon energy of 1000 eV. A Wolter-type mirror can be practically employed as a stable sub-micrometre focusing mirror with high throughput in ARPES applications.Over the last decade, serial crystallography, a method to collect complete diffraction datasets from a large number of microcrystals delivered and exposed to an X-ray beam in random orientations at room temperature, has been successfully implemented at X-ray free-electron lasers and synchrotron radiation facility beamlines. This development relies on a growing variety of sample presentation methods, including different fixed target supports, injection methods using gas-dynamic virtual-nozzle injectors and high-viscosity extrusion injectors, and acoustic levitation of droplets, each with unique requirements. In comparison with X-ray free-electron lasers, increased beam time availability makes synchrotron facilities very attractive to perform serial synchrotron X-ray crystallography (SSX) experiments. Within this work, the possibilities to perform SSX at BioMAX, the first macromolecular crystallography beamline at MAX IV Laboratory in Lund, Sweden, are described, together with case studies from the SSX user program an implementation of a high-viscosity extrusion injector to perform room temperature serial crystallography at BioMAX using two solid supports - silicon nitride membranes (Silson, UK) and XtalTool (Jena Bioscience, Germany). Future perspectives for the dedicated serial crystallography beamline MicroMAX at MAX IV Laboratory, which will provide parallel and intense micrometre-sized X-ray beams, are discussed.Since 2000, federal regulations have affirmed that patients have a right to a complete copy of their health records from their physicians and hospitals. Today, providers across the nation use electronic health records and electronic information exchange for health care, and patients are choosing digital health apps to help them manage their own health and health information. link2 Some doctors and health systems have voiced concern about whether they may transmit a patient's data upon the patient's request to the patient or the patient's health app. This hesitation impedes shared information and care coordination with patients. It impairs patients' ability to use the state-of-the-art digital health tools they choose to track and manage their health. It undermines the ability of patients' family caregivers to monitor health and to work remotely to provide care by using the nearly unique capabilities of health apps on people's smartphones. This paper explains that sharing data electronically with patients and patients' third-party apps is legally consistent under the Health Insurance Portability and Accountability Act (HIPAA) with routine electronic data sharing with other doctors for treatment or with insurers for reimbursement. The paper explains and illustrates basic principles and scenarios around sharing with patients, including patients' third-party apps. Doctors routinely and legally share health data electronically under HIPAA whether or not their organizations retain HIPAA responsibility. Sharing with patients and patients' third-party apps is no different and should be just as routine.

Ascites is a common, painful, and serious complication of cirrhosis. Body weight is a reliable proxy for ascites volume; therefore, daily weight monitoring is recommended to optimize ascites management.

This study aims to evaluate the feasibility of a smartphone app in facilitating outpatient ascites management.

In this feasibility study, patients with cirrhotic ascites requiring active management were identified in both inpatient and outpatient settings. Patients were provided with a Bluetooth-connected scale, which transmitted weight data to a smartphone app and then via the internet to an electronic medical record (EMR). Weights were monitored every weekday. link3 In the event of a weight change of ≥5 lbs in 1 week, patients were called and administered a short symptom questionnaire, and providers received an email alert. The primary outcomes of this study were the percentage of enrolled days during which weight data were successfully transmitted to an EMR and the percentage of weight alerts that prompted extend their participation beyond 30 days. A total of 17 patient readmissions occurred during the study period, with only 4 (24%) related to ascites.

We demonstrated the feasibility of a smartphone app to facilitate the management of ascites and reported excellent rates of patient and provider engagement. This innovation could enable early therapeutic intervention, thereby decreasing the burden of morbidity and mortality among patients with cirrhosis.

We demonstrated the feasibility of a smartphone app to facilitate the management of ascites and reported excellent rates of patient and provider engagement. This innovation could enable early therapeutic intervention, thereby decreasing the burden of morbidity and mortality among patients with cirrhosis.

Upper limb functional deficits are common after stroke and result from motor weakness, ataxia, spasticity, spatial neglect, and poor stamina. Past studies employing a range of commercial gaming systems to deliver rehabilitation to stroke patients provided short-term efficacy but have not yet demonstrated whether or not those games are acceptable, that is, motivational, comfortable, and engaging, which are all necessary for potential adoption and use by patients.

The goal of the study was to assess the acceptability of a smartphone-based augmented reality game as a means of delivering stroke rehabilitation for patients with upper limb motor function loss.

Patients aged 50 to 70 years, all of whom experienced motor deficits after acute ischemic stroke, participated in 3 optional therapy sessions using augmented reality therapeutic gaming over the course of 1 week, targeting deficits in upper extremity strength and range of motion. After completion of the game, we administered a 16-item questionnaire to the patients to assess the game's acceptability; 8 questions were answered by rating on a scale from 1 (very negative experience) to 5 (very positive experience); 8 questions were qualitative.

Autoři článku: Warmingolsen9703 (Pettersson Foss)