Waddellfuentes0400

Z Iurium Wiki

Boid inclusion body disease (BIBD) causes losses in captive snake populations globally. BIBD is associated with the formation of cytoplasmic inclusion bodies (IBs), which mainly comprise reptarenavirus nucleoprotein (NP). In 2017, BIBD was reproduced by cardiac injection of boas and pythons with reptarenaviruses, thus demonstrating a causative link between reptarenavirus infection and the disease. Here, we report experimental infections of Python regius (n = 16) and Boa constrictor (n = 16) with three reptarenavirus isolates. First, we used pythons (n = 8) to test two virus delivery routes intraperitoneal injection and tracheal instillation. Viral RNAs but no IBs were detected in brains and lungs at 2 weeks postinoculation. Next, we inoculated pythons (n = 8) via the trachea. During the 4 months following infection, snakes showed transient central nervous system (CNS) signs but lacked detectable IBs at the time of euthanasia. One of the snakes developed severe CNS signs; we succeeded in reisolating the virus oth virus delivery routes resulted in infection, and infection via the trachea could reflect the natural route of infection. In the experimentally infected snakes, we did not find evidence of inclusion body (IB) formation, characteristic of BIBD, in pythons or boas. Most of the boas (11/12) remained reptarenavirus infected after 10 months, which suggests that they developed a persistent infection that could eventually have led to BIBD. We demonstrated that vaccination using recombinant protein or an inactivated virus preparation prevented infection by a homologous virus in three of four snakes. Comparison of the antibody responses of experimentally and naturally reptarenavirus-infected snakes revealed differences that merit further studies.Rift Valley fever (RVF), which has been designated as a priority disease by the World Health Organization (WHO), is one of the most pathogenic zoonotic diseases endemic to Africa and the Arabian Peninsula. Human vaccine preparation requires the use of appropriate cell substrates to support efficient production of seed vaccine with minimum concerns of tumorigenicity, oncogenicity, or adventitious agents. Vero cells, which were derived from the African green monkey kidney, represent one of the few mammalian cell lines that are used for vaccine manufacturing. This study demonstrated the rescue of RVFV MP-12 infectious clones in Vero cells using plasmids encoding the Macaca mulatta RNA polymerase I promoter. Although Vero cells demonstrated an approximately 20% transfection efficiency, only 0.5% of transfected cells showed the replication of viral genomic RNA, supported by the co-expression of RVFV N and L helper proteins. RVFV Infectious clones were detectable in the culture supernatants approximately 4 to 9 dayy, and vaccine safety via the genetic engineering. This study demonstrated the generation of infectious Rift Valley fever (RVF) virus from cloned cDNA using Vero cells, which are one of a few mammalian cell lines used for vaccine manufacturing. Subsequent re-amplification of virus clones in Vero cells unexpectedly increased viral subpopulations encoding unfavorable mutations, whereas viral re-amplification in human diploid MRC-5 cells could minimize the emergence of such mutants. Rescue of recombinant RVFV from Vero cells and re-amplification in MRC-5 cells will support the vaccine seed lot systems of live-attenuated recombinant RVFV vaccines for human use.Virus infection induces B cells with a wide variety of B cell receptor (BCR) repertoires. Patterns of induced BCR repertoires are different in individuals, while the underlying mechanism causing this difference remains largely unclear. In particular, the impact of germ line BCR immunoglobulin (Ig) gene polymorphism on B cell/antibody induction has not fully been determined. In the present study, we found a potent antibody induction associated with a germ line BCR Ig gene polymorphism. B404-class antibodies, which were previously reported as potent anti-simian immunodeficiency virus (SIV) neutralizing antibodies using the germ line VH3.33 gene-derived Ig heavy chain, were induced in five of 10 rhesus macaques after SIVsmH635FC infection. Investigation of VH3.33 genes in B404-class antibody inducers (n = 5) and non-inducers (n = 5) revealed association of B404-class antibody induction with a germ line VH3.33 polymorphism. Analysis of reconstructed antibodies indicated that the VH3.33 residue 38 is the determinaian immunodeficiency virus neutralizing antibody induction associated with a germ line BCR/antibody Ig gene polymorphism in rhesus macaques. Our results demonstrate that a single nucleotide polymorphism in germ line Ig genes could be a determinant for induction of potent antibodies against virus infection, implying that germ line BCR/antibody Ig gene polymorphisms can be a factor restricting effective antibody induction or responsiveness to vaccination.The World Health Organization estimates that there may be three billion people at risk of infection by Crimean-Congo Hemorrhagic Fever Virus (CCHFV), a highly lethal, emerging orthonairovirus carried by ticks. On the other hand, the closely related Hazara virus (HAZV), a member of the same serogroup, has not been reported as a pathogen for humans. Given the structural and phylogenetic similarities between these two viruses, we evaluated the immunological similarities of the nucleocapsid protein (NP) of these two viruses in multiple species. Strong antigenic similarities were demonstrated in anti-NP humoral immune responses against HAZV and CCHFV in multiple species using convalescent human CCHF sera, rabbit and mouse polyclonal antiserum raised against CCHFV, and mouse polyclonal antiserum against CCHFV-NP in enzyme immunoassays. We also report a convincing cross-reactivity between NPs in Western blots using HAZV-infected cell lysate as antigen and inactivated CCHFV and CCHFV-NP-immunized mice sera. These results suggest that NPs of HAZV and CCHFV share significant similarities in humoral responses across species and underline the potential utility of HAZV as a surrogate model for CCHFV.IMPORTANCE CCHFV and HAZV, members of the Nairoviridae family, are transmitted to mammals by tick bites. CCHFV is considered to be a severe threat to public health and causes hemorrhagic diseases with a high mortality rate, and there are neither preventative nor therapeutic medications against CCHFV disease. HAZV, on the other hand, is not a pathogen to humans and can be studied under BSL-2 conditions. The antigenic relationship between these viruses is of interest for vaccines and for preventative investigations. Here, we demonstrate cross-reactivity in anti-NP humoral immune response between NPs of HAZV and CCHFV in multiple species. These results underline the utility of HAZV as a surrogate model to study CCHFV infection.The structural instability of inactivated foot-and-mouth disease virus (FMDV) hinders the development of vaccine industry. Here we found that some transition metal ions like Cu2+ and Ni2+ could specifically bind to FMDV capsids at capacities about 7089 and 3448 metal ions per capsid, respectively. These values are about 33- and 16-folds of the binding capacity of non-transition metal ion Ca2+ (about 214 per capsid). Further thermodynamic studies indicated that all these three metal ions bound to the capsids in spontaneous enthalpy driving manners (ΔG less then 0, ΔH less then 0, ΔS less then 0), and the Cu2+ binding had the highest affinity. The binding of Cu2+ and Ni2+ could enhance both the thermostability and acid-resistant stability of capsids, while the binding of Ca2+ was helpful only to the thermostability of the capsids. Animal experiments showed that the immunization of FMDV bound with Cu2+ induced the highest specific antibody titers in mice. Coincidently, the FMDV bound with Cu2+ exhibited significpsids. In the present work, this structural disadvantage inspired us to stabilize the capsids through coordinating transition metal ions with the adjacent histidine residues in FMDV capsid, instead of removing or substituting them. Epigenetic activity inhibition This approach was proved effective to enhance not only the stability of FMDV, but also enhance the specific antibody responses; thus, providing a new guideline for designing an easy-to-use strategy suitable for large-scale production of FMDV vaccine antigen.Adenovirus (Ad) is being explored for use in the prevention and treatment of a variety of infectious diseases and cancers. Ad with a deletion in early region 3 (ΔE3) provokes a stronger immune response than Ad with deletions in early regions 1 and E3 (ΔE1/ΔE3). The ΔE1/ΔE3 Ads are more popular because they can carry a larger transgene and because of the deleted E1 (E1A and E1B), are perceived safer for clinical use. Ad with a deletion in E1B55K (ΔE1B55K) has been in phase III clinical trials for use in cancer therapy in the US and has been approved for use in head and neck tumor therapy in China, demonstrating that Ad containing E1A are safe for clinical use. We have shown previously that ΔE1B55K Ad, even while promoting lower levels of an inserted transgene, promoted similar levels of transgene-specific immune responses as a ΔE3 Ad. Products of the Ad early region 4 (E4) limit the ability of cells to mount an innate immune response. Using this knowledge, we deleted the Ad E4 open reading frames 1-4 (E4orf1-4nsertion of additional or larger transgenes needed for targeting other infectious agents or cancers.We previously demonstrated that W proteins from different Newcastle disease virus (NDV) strains localize in either the cytoplasm (e.g., NDV strain SG10) or the nucleus (e.g., NDV strain La Sota). To clarify the mechanism behind these cell localization differences, we overexpressed W protein derived from four different NDV strains or W protein associated with different cellular regions in Vero cells. This revealed that the key region for determining W protein localization is 180-227aa. Further experiments found that there is a nuclear export signal (NES) motif in W protein 211-224aa. W protein could be transported into the nucleus via interaction with KPNA1, KPNA2, and KPNA6 in a nuclear localization signal-dependent manner, and W protein containing an NES was transported back to the cytoplasm in a CRM1-independent manner. Interestingly, we observed that the cytoplasm-localized W protein colocalizes with mitochondria. We rescued the NES-deletion W protein NDV strain rSG10-ΔWC/WΔNES using an NDV reverse geneticknown about the function of NDV W protein, and this limited information is based on studies of the Nipah virus W protein. Here, we investigated the localization mechanism of NDV W protein and its subcellular distribution in mitochondria. We found that W protein localization differences impact IFN-β production, consequently affecting NDV virulence, replication, and pathogenicity. This work provides new insights on the differential localization mechanism of NDV W proteins, along with fundamental knowledge for understanding the functions of W proteins in NDV and other paramyxoviruses.Vesicular stomatitis virus (VSV) is a member of the order Mononegavirales, which consists of viruses with a genome of nonsegmented negative-sense (NNS) RNA. Many insights into the molecular biology of NNS viruses were first made in VSV, which is often studied as a prototype for members of this order. Like other NNS viruses, the VSV RNA polymerase consists of a complex of the large protein (L) and phosphoprotein (P). Recent discoveries have produced a model in which the N-terminal disordered segment of P (PNTD) coordinates the C-terminal accessory domains to produce a "compacted" L conformation. Despite this advancement, the role of the three phosphorylation sites in PNTD has remained unknown. Using nuclear magnetic resonance spectroscopy to analyze the interactions between PNTD and the L protein C-terminal domain (LCTD), we demonstrated our ability to sensitively test for changes in the interface between the two proteins. This method showed that the binding site for PNTD on LCTD is longer than was previously appreciated.

Autoři článku: Waddellfuentes0400 (Odom Buckley)