Vossboyd9625
BACKGROUND The most threatening metastases in breast cancer are brain metastases, which correlate with a very poor overall survival, but also a limited quality of life. A key event for the metastatic progression of breast cancer into the brain is the migration of cancer cells across the blood-brain barrier (BBB). METHODS We adapted and validated the CD34+ cells-derived human in vitro BBB model (brain-like endothelial cells, BLECs) to analyse the effects of patient serum on BBB properties. We collected serum samples from healthy donors, breast cancer patients with primary cancer, and breast cancer patients with, bone, visceral or cerebral metastases. We analysed cytokine levels in these sera utilizing immunoassays and correlated them with clinical data. We used paracellular permeability measurements, immunofluorescence staining, Western blot and mRNA analysis to examine the effects of patient sera on the properties of BBB in vitro. RESULTS The BLECs cultured together with brain pericytes in transwells developeying cerebrovascular pathologies. We showed that serum from patients with cerebral metastases may affect the integrity of the BBB in vitro, associated with elevated concentrations of specific cytokines such as CX3CL1 and CXCL13.BACKGROUND Malaria control in Tanzania currently relies primarily on long-lasting insecticidal nets and indoor residual spraying, alongside effective case management and behaviour change communication. This study explored opinions of key stakeholders on the national progress towards malaria elimination, the potential of currently available vector control interventions in helping achieve elimination by 2030, and the need for alternative interventions that could be used to supplement malaria elimination efforts in Tanzania. METHODS In this exploratory qualitative study, Focus group discussions were held with policy-makers, regulators, research scientists and community members. Malaria control interventions discussed were (a) improved housing, (b) larval source management, (c) mass drug administration (MDA) with ivermectin to reduce vector densities, (d) release of modified mosquitoes, including genetically modified or irradiated mosquitoes, (e) targeted spraying of mosquito swarms, and (f) spatial repellents. Rmanagement and spatial repellents, for which there was universal support. MDA with ivermectin, housing improvement and modified mosquitoes were also widely supported, though each faced concerns from at least one stakeholder group. While policy-makers, regulators and community members all noted their reliance on scientists to make informed decisions, their reasoning on the benefits and disadvantages of specific interventions included factors beyond technical efficiency. This study suggests the need to encourage and strengthen dialogue between research scientists, policy makers, regulators and communities regarding new interventions.BACKGROUND Cardiac dysfunction is increasingly recognized in patients with liver cirrhosis. Nevertheless, the presence or absence of structural alterations such as diffuse myocardial fibrosis remains unclear. We aimed to investigate myocardial structural changes in cirrhosis, and explore left ventricular (LV) structural and functional changes induced by liver transplantation. METHODS This study included 33 cirrhosis patients listed for transplantation and 20 healthy controls. Patients underwent speckle-tracking echocardiography and cardiovascular magnetic resonance (CMR) with extracellular volume fraction (ECV) quantification at baseline (n = 33) and 1 year after transplantation (n = 19). RESULTS CMR-based LV ejection fraction (CMRLV-EF) and echocardiographic LV global longitudinal strain (LV-GLS) demonstrated hyper-contractile LV in cirrhosis patients (CMRLV-EF 67.8 ± 6.9% in cirrhosis vs 63.4 ± 6.4% in healthy controls, P = 0.027; echocardiographic GLS - 24.2 ± 2.7% in cirrhosis vs - 18.6 ± 2.2% in healthy controls, P 0.1). Only one of the cirrhosis patients showed late gadolinium enhancement. However, cirrhosis patients showed a higher ECV (31.6 ± 5.1% vs 25.4 ± 1.9%, P less then 0.001) than healthy controls. ECV showed a positive correlation with Child-Pugh score (r = 0.564, P = 0.001). Electrocardiogram-based corrected QT interval was prolonged in cirrhosis (P less then 0.001). One-year post-transplantation, echocardiographic LV-GLS (from - 24.9 ± 2.4% to - 20.6 ± 3.4%, P less then 0.001) and ECV (from 30.9 ± 4.5% to 25.4 ± 2.6%, P = 0.001) moved to the normal ranges. Corrected QT interval decreased after transplantation (from 475 ± 41 to 429 ± 30 msec, P = 0.001). CONCLUSIONS Myocardial extracellular volume expansion with augmented resting LV systolic function was characteristic of cirrhotic cardiomyopathy, which normalizes 1-year post-transplantation. Thus, myocardial extracellular expansion represents a structural component of myocardial changes in cirrhosis.BACKGROUND Depression is a common mental disease that mainly manifests as bad mood, decreased interest, pessimism, slow thinking, lack of initiative, poor diet and sleep. Patients with severe depression have suicidal tendencies. see more Exosomes are small vesicles released by the fusion of a multivesicular body and membranes, and they contain specific proteins, nucleic acids, and lipids related to the cells from which they originate. MicroRNAs (miRNAs) are 20-24 nt RNAs that can be packaged into exosomes and can play important regulatory roles. Astrocytes are the most abundant cell population in the central nervous system and have a close link to depression. Astrocyte activation could result in the release of inflammatory cytokines, including IL-1β, IL-6, and TNF-α, which could promote the symptoms of depression. In previous research, our team confirmed that NK cells regulate depression in mice. Here, we propose that miRNA in the exosomes from NK cells performs this antidepressant function. METHODS Exosomes from NK cof pro-inflammatory cytokines and inhibit expression of Tril in vitro. In vivo experiments revealed that exosomes with low miR-207 levels showed decreased antidepressant activity. CONCLUSION Collectively, our findings revealed that exosomal miR-207 alleviated symptoms of depression in stressed mice by targeting Tril to inhibit NF-κB signaling in astrocytes.