Vilstruplundgaard2097

Z Iurium Wiki

Exposure to endocrine-disrupting chemicals (EDCs) has been hypothesized as a cause of declining sheep reproductive efficiency. Understanding the long-term effects of EDCs such as heavy metals on reproductive health requires investigation in 'real life' of sheep that are reared in industrial areas. The aim of this study was to evaluate the effect of long-term exposure of Kermani rams to high levels of environmental heavy metals probably emitted from a copper smelter at KhatoonAbad in ShahreBabak, Kerman province. Testicular characteristics were determined in randomly-selected rams (3-4 years old) at 4 directions (south, north, east, and west) and 4 distances (10, 20, 30, and 40 km) from the smelter. Testicular trace element contents, size, serum testosterone, histological attributes and seminal characteristics, except semen volume, were affected by both the direction and the distance from the smelter (P less then 0.05). Testicular contents of Pb, Cd, Cr, and Ni, and sperm abnormalities were higher at 10 km south from the smelter and lower at 40 km west. Other parameters were higher at 40 km west and lower at 10 km south. Interestingly, the testicular contents of Cu at 10 km south were lower and associated with higher sperm abnormalities in the rams reared closer to the smelter. The highest weight, length and circumference of the testis were found at 40 km west. The lowest concentration of testosterone was observed at 10 km south, being 92.6% lower than the highest values obtained at 40 km west. The diameter of seminiferous tubules and epithelial height at 10 km south were 8.9% and 27.5% lower than the highest values obtained at 40 km west. A positive correlation between Pb, Cd, Cr and Ni contents in the testis with sperm abnormalities, and a negative correlation between these elements with the other parameters were found. It was concluded that long-term exposure to heavy metals might have been a cause of decreased fertility in rams and probably other living species in this region.

Low benzene exposure leads to hematotoxicity, but we still lack sensitive early monitoring and early warning markers. Benzene is associated with inflammation, which is mainly mediated by cytokines network. However, until now few studies have conducted high-throughput detection of multi-cytokines to get a global view of cytokine changes and screen for markers of benzene-induced toxicity. this website We hypothesized that cytokine profiles mediate benzene-induced hematotoxicity.

228 subjects consisting of 114 low benzene exposed workers and 114 healthy controls were recruited at Research Center of Occupational Medicine, Peking University Third Hospital, Beijing. The serum concentrations of 27 cytokines were detected by cytokinomics array, urinary benzene series metabolites were measured by UPLC-MS/MS, and peripheral blood cell counts were observed by basic blood test.

Among 27 cytokines, IL-9 and MIP1-α were significantly lower, but IL-4, IL-10, IL-15, MCP-1, TNF-αand VEGF were significantly higher in benzene exposure decreases of WBC count and IL-9. We also found IL-9 partially mediated the effect of low benzene exposure on WBC count, which may be a potential and promising early monitoring and early warning marker of benzene hematotoxicity.Benzo(a)pyrene (B(a)P) is a widespread persistent organic pollutant (POP) and a well-known endocrine disruptor. Exposure to BaP is known to disrupt the steroid balance and impair embryo implantation, but the mechanism under it remains unclear. The corpus luteum (CL), the primary source of progesterone during early pregnancy, plays a pivotal role in embryo implantation and pregnancy maintenance. The inappropriate luteal function may result in implantation failure and spontaneous abortions. Therefore, this study was conducted to assess the effects and potential mechanisms of B(a)P on the CL function. Our results showed that pregnant mice received B(a)P displayed impaired embryo implantation and dysfunction of ovarian CL. The estrogen and progesterone levels decreased by B(a)P. In vitro, exposure to BPDE, which is the metabolite of B(a)P, affected the luteinization of granular cell KK-1. Additionally, melatonin and its receptors, which are important for ovarian function and anti-oxidative damage, were affected by B(a)P or BPDE. B(a)P or BPDE-treated alone impaired antioxidant capacity of ovarian granulosa cells, caused an increasing of ROS and cell apoptosis, and disrupted the PI3K/AKT/GSK3β signaling pathway in vivo and in vitro. Co-treatment with melatonin alleviated B(a)P or BPDE-induced CL dysfunction by ameliorating oxidative stress, counteracting phosphorylation of PI3K/AKT/GSK3β signaling pathway, decreasing the apoptosis of the ovarian cells. Moreover, activation of the melatonin receptor by ramelteon in KK-1 cells exhibits an analogous protective effect as melatonin. In conclusion, our findings not only firstly clarify the potential mechanisms of BaP-induced CL dysfunction, but also extend the understanding about the ovarian protection of melatonin and its receptors against B(a)P exposure.Fullerene C60 (FC60), with its unique physical properties, has been used in many applications in recent decades. The increased likelihood of direct release into the environment has raised interest in understanding the biological effects of FC60 to aquatic organisms. Nowadays, only few studies have analysed FC60 effects and bioaccumulation in marine organisms following in vivo exposure. To provide new data about FC60 toxicity, Ruditapes philippinarum was selected as target species to assess potential adverse effects of the contaminant. Clams were exposed for 1, 3 and 7 days to predicted environmental concentrations of FC60 (1 and 10 μg/L) and cellular and biochemical responses were evaluated in clams' gills, digestive gland and haemolymph. The FC60 content in gills and digestive gland was determined in all experimental conditions after 7 days of exposure. Results showed an increase in oxidative stress. In particular, a significant modulation in antioxidant enzyme activities, and changes in glutathione S-transfnder the exposure conditions tested the high damage detected to lipids and proteins could contribute to long-term problems for the organism.

Autoři článku: Vilstruplundgaard2097 (Barefoot McLeod)