Villadsenstout3713
These complexes therefore represent interesting redox based switches between multi-parameter states since they allow switching from a neutral paramagnetic to an anionic diamagnetic form together with a significant change in chromicity. Taking advantage of the significant color difference between the oxidized and the reduced form, an electrochromic cell was prepared with [Ir(ppy)2(TBC)squi] and its spectroelectrochemical properties are reported.A novel black organoammonium iodoplumbate semiconductor, namely phenyl viologen lead iodide C22H18N2(PbI3)2 (PhVPI), was successfully synthesized and characterized. This material showed physical and chemical properties suitable for photovoltaic applications. Indeed, low direct allowed band gap energy (Eg = 1.32 eV) and high thermal stability (up to at least 300 °C) compared to methylammonium lead iodide CH3NH3PbI3 (MAPI, Eg = 1.5 eV) render PhVPI potentially attractive for solar cell fabrication. The compound was extensively characterized by means of X-ray diffraction (performed on both powder and single crystals), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), UV-photoelectron spectroscopy (UPS), FT-IR spectroscopy, TG-DTA, and CHNS analysis. Reactivity towards water was monitored through X-ray powder diffraction carried out after prolonged immersion of the material in water at room temperature. Unlike its methyl ammonium counterpart, PhVPI proved to be unaffected by water exposure. The lack of reactirs from the prototypal perovskite structure. In fact, it comprises infinite double chains of corner-sharing PbI6 octahedra along the a-axis direction with phenyl viologen cations positioned between the columns. Finally, the present determination of PhVPI's electronic band structure achieved through UPS and UV-Vis DRS is instrumental in using the material for solar cells.Protonated intermediates are postulated to be involved in the rate determining step of many sugar reactions. This paper presents a study of protonated sugar species, isolated in the gas phase, using a combination of infrared multiple photon dissociation (IRMPD) spectroscopy, classical ab initio molecular dynamics (AIMD) and quantum mechanical vibrational self-consistent field (VSCF) calculations. It provides a likely identification of the reactive intermediate oxocarbenium ion structure in a d-galactosyl system as well as the saccharide pyrolysis product anhydrogalactose (that suggests oxocarbenium ion stabilization), along with the spectrum of the protonated parent species methyl d-galactopyranoside-H+. Its vibrational fingerprint indicates intramolecular proton sharing. Classical AIMD simulations for galactosyl oxocarbenium ions, conducted in the temperature range ∼300-350 K (using B3LYP potentials on-the-fly) reveal efficient transitions on the picosecond timescale. Multiple conformers are likely to exist under the experimental conditions and along with static VSCF calculations, they have facilitated the identification of the individual structural motifs of the galactosyl oxocarbenium ion and protonated anhydrogalactose ion conformers that contribute to the observed experimental spectra. These results demonstrate the power of experimental IRMPD spectroscopy combined with dynamics simulations and with computational spectroscopy at the anharmonic level to unravel conformer structures of protonated saccharides, and to provide information on their lifetimes.The link between food and human health is increasingly a topic of interest. One avenue of study has been to assess food disintegration and interactions within the gastrointestinal tract. In vitro digestion models have been widely used to overcome the constrictions associated with in vivo methodology. The COST Action INFOGEST developed an international, harmonised protocol for static simulation of digestion in the upper gastrointestinal tract of adults. This protocol is widely used; however, it is restricted to providing end-point assessment without considering the possible structural changes. On the other hand, there are dynamic models that provide more physiologically relevant data but are expensive and difficult to access. There is a gap between these models. The method outlined in this article provides an intermediate model; it builds upon the harmonised static model and now includes crucial kinetic aspects associated with the gastric phase of digestion, including gradual acidification, fluid and enzyme secretion and emptying. This paper provides guidance and standardised recommendations of a physiologically relevant semi-dynamic in vitro simulation of upper gastrointestinal tract digestion, with particular focus on the gastric phase. Adaptations of this model have already been used to provide kinetic data on nutrient digestion and structural changes during the gastric phase that impact on nutrient absorption. Moreover, it provides a simple tool that can be used in a wide range of laboratories.Oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are three key reactions for the development of green and sustainable energy systems. Efficient electrocatalysts for these reactions are highly desired to lower their overpotentials and promote practical applications of related energy devices. Metal-organic frameworks (MOFs) have recently emerged as precursors to fabricate carbon-based electrocatalysts with high electrical conductivity and uniformly distributed active sites. In this review, the current progress of MOF-derived carbon-based materials for ORR/OER/HER electrocatalysis is presented. Materials design strategies of MOF-derived carbon-based materials are firstly summarized to show the rich possibilities of the morphology and composition of MOF-derived carbon-based materials. A wide range of applications based on these materials for ORR, OER, HER and multifunctional electrocatalysis are discussed, with an emphasis on the required features of MOF-derived carbon-based materials for the electrocatalysis of corresponding reactions. Epigenetics inhibitor Finally, perspectives on the development of MOF-derived carbon-based materials for ORR, OER and HER electrocatalysis are provided.