Vickbutler1663

Z Iurium Wiki

We provide some recommendations to address these challenges, including a list of proposed reporting standards for publications and collaboration opportunities in this interdisciplinary space. © The Author(s) 2020.In recent years, there has been a significant expansion in the development and use of multi-modal sensors and technologies to monitor physical activity, sleep and circadian rhythms. These developments make accurate sleep monitoring at scale a possibility for the first time. Vast amounts of multi-sensor data are being generated with potential applications ranging from large-scale epidemiological research linking sleep patterns to disease, to wellness applications, including the sleep coaching of individuals with chronic conditions. However, in order to realise the full potential of these technologies for individuals, medicine and research, several significant challenges must be overcome. There are important outstanding questions regarding performance evaluation, as well as data storage, curation, processing, integration, modelling and interpretation. Here, we leverage expertise across neuroscience, clinical medicine, bioengineering, electrical engineering, epidemiology, computer science, mHealth and human-computer interaction to discuss the digitisation of sleep from a inter-disciplinary perspective. We introduce the state-of-the-art in sleep-monitoring technologies, and discuss the opportunities and challenges from data acquisition to the eventual application of insights in clinical and consumer settings. Further, we explore the strengths and limitations of current and emerging sensing methods with a particular focus on novel data-driven technologies, such as Artificial Intelligence. © The Author(s) 2020.There is tremendous enthusiasm surrounding the potential for machine learning to improve medical prognosis and diagnosis. However, there are risks to translating a machine learning model into clinical care and clinical end users are often unaware of the potential harm to patients. This perspective presents the "Model Facts" label, a systematic effort to ensure that front-line clinicians actually know how, when, how not, and when not to incorporate model output into clinical decisions. The "Model Facts" label was designed for clinicians who make decisions supported by a machine learning model and its purpose is to collate relevant, actionable information in 1-page. Practitioners and regulators must work together to standardize presentation of machine learning model information to clinical end users in order to prevent harm to patients. Efforts to integrate a model into clinical practice should be accompanied by an effort to clearly communicate information about a machine learning model with a "Model Facts" label. © The Author(s) 2020.Deep learning (DL) has been shown to be effective in developing diabetic retinopathy (DR) algorithms, possibly tackling financial and manpower challenges hindering implementation of DR screening. However, our systematic review of the literature reveals few studies studied the impact of different factors on these DL algorithms, that are important for clinical deployment in real-world settings. Using 455,491 retinal images, we evaluated two technical and three image-related factors in detection of referable DR. For technical factors, the performances of four DL models (VGGNet, ResNet, DenseNet, Ensemble) and two computational frameworks (Caffe, TensorFlow) were evaluated while for image-related factors, we evaluated image compression levels (reducing image size, 350, 300, 250, 200, 150 KB), number of fields (7-field, 2-field, 1-field) and media clarity (pseudophakic vs phakic). A939572 clinical trial In detection of referable DR, four DL models showed comparable diagnostic performance (AUC 0.936-0.944). To develop the VGGNet model, two computational frameworks had similar AUC (0.936). The DL performance dropped when image size decreased below 250 KB (AUC 0.936, 0.900, p  less then  0.001). The DL performance performed better when there were increased number of fields (dataset 1 2-field vs 1-field-AUC 0.936 vs 0.908, p  less then  0.001; dataset 2 7-field vs 2-field vs 1-field, AUC 0.949 vs 0.911 vs 0.895). DL performed better in the pseudophakic than phakic eyes (AUC 0.918 vs 0.833, p  less then  0.001). Various image-related factors play more significant roles than technical factors in determining the diagnostic performance, suggesting the importance of having robust training and testing datasets for DL training and deployment in the real-world settings. © The Author(s) 2020.Despite proper sleep hygiene being critical to our health, guidelines for improving sleep habits often focus on only a single component, namely, sleep duration. Recent works, however, have brought to light the importance of another aspect of sleep bedtime regularity, given its ties to cognitive and metabolic health outcomes. To further our understanding of this often-neglected component of sleep, the objective of this work was to investigate the association between bedtime regularity and resting heart rate (RHR) an important biomarker for cardiovascular health. Utilizing Fitbit Charge HRs to measure bedtimes, sleep and RHR, 255,736 nights of data were collected from a cohort of 557 college students. We observed that going to bed even 30 minutes later than one's normal bedtime was associated with a significantly higher RHR throughout sleep (Coeff +0.18; 95% CI +0.11, +0.26 bpm), persisting into the following day and converging with one's normal RHR in the early evening. Bedtimes of at least 1 hour earlier were also associated with significantly higher RHRs throughout sleep; however, they converged with one's normal rate by the end of the sleep session, not extending into the following day. These observations stress the importance of maintaining proper sleep habits, beyond sleep duration, as high variability in bedtimes may be detrimental to one's cardiovascular health. © The Author(s) 2020.Deficits in reward processing are a central feature of major depressive disorder with patients exhibiting decreased reward learning and altered feedback sensitivity in probabilistic reversal learning tasks. Methods to quantify probabilistic learning in both rodents and humans have been developed, providing translational paradigms for depression research. We have utilised a probabilistic reversal learning task to investigate potential differences between conventional and rapid-acting antidepressants on reward learning and feedback sensitivity. We trained 12 rats in a touchscreen probabilistic reversal learning task before investigating the effect of acute administration of citalopram, venlafaxine, reboxetine, ketamine or scopolamine. Data were also analysed using a Q-learning reinforcement learning model to understand the effects of antidepressant treatment on underlying reward processing parameters. Citalopram administration decreased trials taken to learn the first rule and increased win-stay probability. Reboxetine decreased win-stay behaviour while also decreasing the number of rule changes animals performed in a session.

Autoři článku: Vickbutler1663 (Molina Poole)