Vestergaardgertsen1650
Of 790 unique mutations, TP53 is the most common followed by APC, KRAS, PIK3CA, ATM, PTEN, NOTCH1, BRCA2, BRAF, KMT2D, LRP1B, and CDKN2A. TP53 was found in most metastatic sites and appears to be a key driver of acquired drug resistance. We highlight examples of acquired mutational profiles pre-/post- targeted therapy in multiple tumor types with a menu of potential targeted agents. Conclusion The mutational profiling of primary and metastatic lesions in cancer patients provides an opportunity to identify TP53 driver 'pathways' that may predict for drug sensitivity/resistance and guide rational drug combinations in clinical trials.Natural Killer cells belong to group 1 innate lymphoid cells, which also includes ILC1s. NK/ILC1s are highly heterogeneous cell types showing distinct phenotypes across tissues and conditions. NK cells have long been described as innate lymphocytes able to directly and rapidly kill tumor cells without antigen-restriction. Different mechanisms were shown to modulate NK cell activation and tumor resistance, mainly based on cytokine stimulation and receptor-ligand interactions, and several strategies have been developed to target NK cells in tumor immunotherapy to promote NK cell function and overcome tumor evasion. The characterization of ILC1 distinct phenotype and function and the specific role in tumors still needs further investigation and will be essential to better understand the impact of innate lymphoid cells in tumors. Here, we review key aspects of NK cell biology that are relevant in tumor immune surveillance, emphasizing the most recent findings in the field. We describe the novel therapeutical strategies that have been developed in tumor immunotherapy targeting NK cells, and we summarize some recent findings related to NK cell/ILC1 transition in tumor models.
It has been shown that prolonged exhaustive exercise, such as half-marathon running, could lead to transient post-exercise elevation of cardiac troponins, increase in oxidative stress, and mild decline in renal function in adolescent athletes. With increases in sports participation involving young people, there has been much interest in pre and post health evaluations following exercise. Evaluations can be used to identify pre-existing health confounders and to examine any detrimental responses that may occur post exercise. Study purpose & Methods The purpose of this study was to evaluate pre and post exercise measures of cardiac function, serum albumin, systemic immunoglobulin (Serum IgA and IgG), cortisol and testosterone in adolescent (age 16.2 ± 0.6) male endurance runners performing in 21-km maximal run.
Results revealed that cortisol, IgA and IgG levels significantly decreased 2, 4, and 24 h post exercise compared to pre-exercise levels (
< 0.05). Testosterone levels reduced 4 h post exercise (
< 0.05) but were restored to baseline values following 24 h. There were no changes recorded for albumin levels post exercise (
> 0.05). ECG assessments did not show any abnormalities at the T wave axis, ST segments and Q wave pre or post exercise.
The findings from this study suggest that a single bout of prolonged maximum running is not likely to induce abnormal electrical activity in the heart, but does decrease serum immunoglobulin, and homeostasis of anabolic and catabolic hormones in trained adolescent endurance runners.
The findings from this study suggest that a single bout of prolonged maximum running is not likely to induce abnormal electrical activity in the heart, but does decrease serum immunoglobulin, and homeostasis of anabolic and catabolic hormones in trained adolescent endurance runners.The article presents the results of tests performed on fly ash with a high content of ammonium (up to 400 ppm) from the NOx reduction process. The main properties of fly ash were tested according to EN 450-1 and the results were compared with fly ash without ammonium. The comparison showed that fly ash with high concentration of ammonium suits the requirements of the European standard. buy GPR84 antagonist 8 Although the requirements do not limit the ammonium content, using such material as an additive for cement composites causes the emission of gaseous ammonium during mixing and from the final product. For this reason, the emission of ammonium from mortars containing fly ash were tested. The results have shown that using high ammonium fly ash might pollute indoor air and affect the health of users.By detecting the defect location in high-resolution insulator images collected by unmanned aerial vehicle (UAV) in various environments, the occurrence of power failure can be timely detected and the caused economic loss can be reduced. However, the accuracies of existing detection methods are greatly limited by the complex background interference and small target detection. To solve this problem, two deep learning methods based on Faster R-CNN (faster region-based convolutional neural network) are proposed in this paper, namely Exact R-CNN (exact region-based convolutional neural network) and CME-CNN (cascade the mask extraction and exact region-based convolutional neural network). Firstly, we proposed an Exact R-CNN based on a series of advanced techniques including FPN (feature pyramid network), cascade regression, and GIoU (generalized intersection over union). RoI Align (region of interest align) is introduced to replace RoI pooling (region of interest pooling) to address the misalignment problem, and the depthwise separable convolution and linear bottleneck are introduced to reduce the computational burden. Secondly, a new pipeline is innovatively proposed to improve the performance of insulator defect detection, namely CME-CNN. In our proposed CME-CNN, an insulator mask image is firstly generated to eliminate the complex background by using an encoder-decoder mask extraction network, and then the Exact R-CNN is used to detect the insulator defects. The experimental results show that our proposed method can effectively detect insulator defects, and its accuracy is better than the examined mainstream target detection algorithms.Environmental Impact Assessment (EIA) is applied to infrastructure and other large projects. The European Union EIA Directive (2011/92/EU as amended by 2014/52/EU) requires EIAs to consider the effects that a project might have on human health. The International Association for Impact Assessment and the European Public Health Association prepared a reference paper on public health in EIA to enable the health sector to contribute to this international requirement. We present lessons from this joint action. We review literature on policy analysis, impact assessment and Health Impact Assessment (HIA). We use findings from this review and from the consultation on the reference paper to consider how population and human health should be defined; how the health sector can participate in the EIA process; the relationship between EIA and HIA; what counts as evidence; when an effect should be considered 'likely' and 'significant'; how changes in health should be reported; the risks from a business-as-usual coverage of human health in EIA; and finally competencies for conducting an assessment of human health.