Vellingmayer0665
Pulcherrimin is a secondary metabolite of yeasts belonging to the Metschnikowia pulcherrima clade, and pulcherrimin formation is responsible for the antimicrobial action of its producers. Understanding the environmental function of this metabolite can provide insight into various microbial interactions and enables the efficient development of new effective bioproducts and methods. In this study, we evaluated the antimicrobial and antiadhesive action of yeast pulcherrimin, as well as its protective properties under selected stressful conditions. Classical microbiological plate methods, microscopy, and physico-chemical testing were used. The results show that pure pulcherrimin does not have antimicrobial properties, but its unique hydrophilic nature may hinder the adhesion of hydrophilic bacterial cells to abiotic surfaces. Pulcherrimin also proved to be a good cell protectant against UV-C radiation at both high and low temperatures.The primary objective of this research is to determine how granulation compares to spray drying/agglomeration for producing larger, more dense flavoring particles. Granulation can yield large, dense particles and thereby negate the need for a two-step process (spray drying followed by agglomeration) to achieve improved flow/handling properties of dry flavorings. In this study, a 55% solids slurry (blend of OSAn-modified starch and maltodextrin 15DE) was prepared and then single-fold orange peel oil was added at 20 or 25% of the carrier solids level. The 20% flavoring emulsion was spray dried (SD), and a portion of the resultant powder then agglomerated (Agg) in a bottom spray, fluidized bed. A second emulsion of the same carrier composition but using 25% orange oil based on carrier solids was prepared and subjected to fluidized bed granulation (FBG). Particle size, density, orange oil retention and oxidative stability on storage were determined. Overall, it is observed during this study that FBG produces orange oil encapsulates that possess better properties, such as more resistance to oxidation, a better retention of orange oil and a higher density than SD or SD/Agg powders.Bacterial kidney disease (BKD) is a major health problem of salmonids, affecting both wild and cultured salmon. The disease is caused by Renibacterium salmoninarum (Rs), a fastidious, slow-growing and strongly Gram-positive diplobacillus that produces chronic, systemic infection characterized by granulomatous lesions in the kidney and other organs, often resulting in death. Fast detection of the pathogen is important to limit the spread of the disease, particularly in hatcheries or aquaculture facilities. Aptamers are increasingly replacing conventional antibodies as platforms for the development of rapid diagnostic tools. In this work, we describe the first instance of isolating and characterizing a ssDNA aptamer that binds with high affinity to p57 or major soluble antigen (MSA), the principal antigen found on the cell wall surface of Rs. Specifically, in this study a construct of the full-length protein containing a DNA binding domain (MSA-R2c) was utilized as target. Aptamers were isolated from a pool of random sequences using GO-SELEX (graphene oxide-systematic evolution of ligands by exponential enrichment) protocol. The selection generated multiple aptamers with conserved motifs in the random region. One aptamer with high frequency of occurrence in different clones was characterized and found to display a strong binding affinity to MSA-R2c with a Kd of 3.0 ± 0.6 nM. The aptamer could be potentially utilized for the future development of a sensor for rapid and onsite detection of Rs in water or in infected salmonids, replacing time-consuming and costly lab analyses.Copper(II) azacyclam complexes (azacyclam = 1,3,5,8,12-pentaazacyclotetradecane) containing naphthyl or dansyl subunits can be prepared by template synthesis involving proper sulfonamide derivatives as locking fragments. The macrocyclic complexes are very poorly emissive due to the fluorescence-quenching behavior displayed by Cu2+ ions. However, the fluorescence can be recovered as a result of the decomposition of the complexes, which induces the release of free light-emitting subunits to the solution. This reaction takes place very slowly in neutral water but its rate is increased by the presence of sulfite. Therefore, [Cu(azacyclam)]2+ derivatives have been investigated as simple chemical probes for the fluorogenic detection of sulfite both on laboratory and real samples. Preliminary tests performed on samples of white wine provided sulfite concentration values that are in agreement with those obtained by a standard analytical method.This study aimed to assess two novel 5-arylideneimidazolidine-2,4-dione (hydantoin) derivatives (JH3 and JH10) demonstrating photoprotective activity using the reconstructed human skin model EpiskinTM. The skin permeability, irritation, and phototoxicity of the compounds was evaluated in vitro. Moreover, the in vitro genotoxicity and human metabolism of both compounds was studied. For skin permeation and irritation experiments, the test compounds were incorporated into a formulation. It was shown that JH3 and JH10 display no skin irritation and no phototoxicity. Both compounds did not markedly enhance the frequency of micronuclei in CHO-K1 cells in the micronucleus assay. G007-LK Preliminary in vitro studies with liver microsomes demonstrated that hydrolysis appears to constitute their important metabolic pathway. EpiskinTM permeability experiments showed that JH3 permeability was lower than or close to currently used UV filters, whereas JH10 had the potential to permeate the skin. Therefore, a restriction of this compound permeability should be obtained by choosing the right vehicle or by optimizing it, which should be addressed in future studies.Tamus communis L. is a plant distributed in a number of geographical areas whose rhizome has been used for centuries as an anti-inflammatory and analgesic remedy. This review aims to summarize the current knowledge of the chemical composition and biological activity of the extracts or individual compounds of the rhizome. The data for the principal secondary metabolites are systematized sterols, steroidal saponins, phenanthrenes, dihydrophenanthrenes, etc. Results of biological tests for anti-inflammatory action, cytotoxicity, anticholinesterase effect, and xanthine oxidase inhibition are presented. Some open questions about the therapeutic properties of the plant are also addressed.Human skin is the largest organ and the most external interface between the environment and the body. Vast communities of viruses, bacteria, archaea, fungi, and mites, collectively named the skin microbiome (SM), cover the skin surface and connected structures. Skin-resident microorganisms contribute to the establishment of cutaneous homeostasis and can modulate host inflammatory responses. Imbalances in the SM structure and function (dysbiosis) are associated with several skin conditions. Therefore, novel target for the skincare field could be represented by strategies, which restore or preserve the SM natural/individual balance. Several of the beneficial effects exerted by the SM are aroused by the microbial metabolite butyrate. Since butyrate exerts a pivotal role in preserving skin health, it could be used as a postbiotic strategy for preventing or treating skin diseases. Herein, we describe and share perspectives of the potential clinical applications of therapeutic strategies using the postbiotic butyrate against human skin diseases.The fast-growing food industry is bringing significant number of new products to the market. To protect consumers' health and rights, it is crucial that food control laboratories are able to ensure reliable quality testing, including product authentication and detection of adulterations. In our study, we applied a fast and eco-friendly method based on shotgun-lipidomic mass spectrometry for the authentication of niche edible oils. Comprehensive lipid profiles of camelina (CA), flax (FL) and hemp (HP) seed oils were obtained. With the aid of principal component analysis (PCA), it was possible to detect and distinguish each of them based on their lipid profiles. Lipidomic markers characteristic ofthe oils were also identified, which can be used as targets and expedite development of new multiplexed testing methods.Adenosine triphosphate (ATP) is the key energy intermediate of cellular metabolic processes and a ubiquitous extracellular messenger. As an extracellular messenger, ATP acts at plasma membrane P2 receptors (P2Rs). The levels of extracellular ATP (eATP) are set by both passive and active release mechanisms and degradation processes. Under physiological conditions, eATP concentration is in the low nanomolar range but can rise to tens or even hundreds of micromoles/L at inflammatory sites. A dysregulated eATP homeostasis is a pathogenic factor in several chronic inflammatory diseases, including type 2 diabetes mellitus (T2DM). T2DM is characterized by peripheral insulin resistance and impairment of insulin production from pancreatic β-cells in a landscape of systemic inflammation. Although various hypoglycemic drugs are currently available, an effective treatment for T2DM and its complications is not available. However, counteracting systemic inflammation is anticipated to be beneficial. The postulated eATP increase in T2DM is understood to be a driver of inflammation via P2X7 receptor (P2X7R) activation and the release of inflammatory cytokines. Furthermore, P2X7R stimulation is thought to trigger apoptosis of pancreatic β-cells, thus further aggravating hyperglycemia. Targeting eATP and the P2X7R might be an appealing novel approach to T2DM therapy.Peperomia pellucida is a species known in the Amazon as "erva-de-jabuti" that has been used in several therapeutic applications based on folk medicine. Herein, we describe the classes, subclasses, and the main compounds of the leaves, stems, and roots from P. pellucida by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry associated with molecular networks, mirror plot on the GNPS library, and machine learning. These data show compounds that were annotated for the first time in the Peperomia genus, such as 2',4',5'-trihydroxybutyrophenonevelutin, dehydroretrofractamide C, and retrofractamide B.The P2X5 receptor, an ATP-gated cation channel, is believed to be involved in tumor development, inflammatory bone loss and inflammasome activation after bacterial infection. Therefore, it is a worthwhile pharmacological target to treat the corresponding diseases, especially in minority populations that have a gene variant coding for functional homotrimeric P2X5 channels. Here, we investigated the effects of dihydropyridines on the human full-length P2X5 receptor (hP2X5FL) heterologously expressed in Xenopus oocytes using the two-microelectrode voltage clamp method. Agonist dependency, kinetics and permeation behavior, including Cl- permeability, were similar to hP2X5FL expressed in HEK293 or 1321N1 cells. Additionally, 1,4-dihydropyridines have been shown to interact with various other purinergic receptors, and we have examined them as potential hP2X5 modulators. Of seven commercially available and four newly synthesized dihydropyridines tested at hP2X5FL, only amlodipine exerted an inhibitory effect, but only at a high concentration of 300 µM.