Velezespersen1956
corrected.
Osteoarthritis (OA) is the most common inflammatory disease associated with pain and cartilage destruction. Interleukin (IL)-1β is widely used to induce inflammatory response in OA models. This study aimed to explore the role of Danshensu (DSS) in IL-1β-induced inflammatory responses in OA.
IL-1β was used to induce chondrocyte inflammation. Cell viability was evaluated by Cell Counting Kit-8 (CCK-8) assay. IL-6, COX-2, TNF-α, and iNOS mRNA levels were detected by qRT-PCR. MMP3, MMP13, ADAMTS4, ADAMTS5, Aggrecan, Collagen, p-IκBα, and p-p65 protein levels were detected by Western blot. An OA mouse model was established by surgical destabilization of the medial meniscus (DMM), and the Osteoarthritis Research Society International (OARSI) score was evaluated by H&E staining.
DSS did not affect the levels of inflammatory indicators including IL-6, COX-2, TNF-α, iNOS, PEG2, and NO but suppressed COX-2 and iNOS protein expression in IL-1β treated chondrocytes. In addition, DSS downregulated IL-1β-enhanced expression of MMP3, MMP13, ADAMTS4, and ADAMTS5 and upregulated aggrecan and collagen expression. Moreover, DSS significantly inhibited IL-1β-induced phosphorylation of p-IκBα and p-p65 in a dose-dependent manner in chondrocytes, suggesting it plays a role in the NF-κB signaling pathway. Furthermore, DSS significantly reduced DMM-induced cartilage OARSI score in mice, further demonstrating its protective role in OA progression in vivo.
Our study revealed the protective role of DSS in OA, suggesting that DSS might act as a potential treatment for OA.
Our study revealed the protective role of DSS in OA, suggesting that DSS might act as a potential treatment for OA.One of the main players in the cell-specific replication timing pattern is Rap1 interacting factor-1 (Rif1). Rif1 protein consists of N-terminal and C-terminal domains and an intrinsically disordered region in between. It has been suggested that both N- and C-termini of Rif1 are capable of binding to DNA with particularly high affinity to cruciform DNA structures. In the present study, we expressed, solubilized, and purified the maltose-binding protein-tagged murine Rif1 C-terminal domain (MBP-muRif1-CTD). Biological activity of the purified protein was assessed by the electrophoretic mobility shift assay (EMSA) and surface plasmon resonance (SPR). Our results show that the MBP-muRif1-CTD binds G-quadruplex (G4) structure with high affinity (KD 19.0 ± 0.8 nM), as was previously suggested. GSK3 inhibitor This study is the first step in investigation of the interaction of MBP-Profinity eXact-muRif1-CTD and G4 by SPR.The review focuses on the main factors involved in the formation of nonspecific products in isothermal nucleic acid amplification, such as mispriming, ab initio DNA synthesis, and additional activities of DNA polymerases, and discusses approaches to prevent formation of such nonspecific products in LAMP, RPA, NASBA, RCA, SDA, LSDA, NDA, and EXPAR.The cerebral dopamine neurotrophic factor (CDNF) together with the mesencephalic astrocyte-derived neurotrophic factor (MANF) form a unique family of neurotrophic factors (NTFs) structurally and functionally different from other proteins with neurotrophic activity. CDNF has no receptors on the cell membrane, is localized mainly in the cavity of endoplasmic reticulum (ER), and its primary function is to regulate ER stress. In addition, CDNF is able to suppress inflammation and apoptosis. Due to its functions, CDNF has demonstrated outstanding protective and restorative properties in various models of neuropathology associated with ER stress, including Parkinson's disease (PD). That is why CDNF already passed clinical trials in patients with PD. However, despite the name, CDNF functions extend far beyond the dopamine system in the brain. In particular, there are data on participation of CDNF in the maturation and maintenance of other neurotransmitter systems, regulation of the processes of neuroplasticity and non-motor behavior. In the present review, we discuss the features of CDNF structure and functions, its protective and regenerative properties.The effects of superoxide dismutase (SOD) inhibitors, diethyldithiocarbamate (DDC), triethylenetetramine (trien), and their combination with glucose on cells of the epidermis from pea leaves of different age (rapidly growing young leaves and slowly growing old leaves) was investigated. DDC and trien caused death of the guard cells as determined by destruction of their nuclei. Glucose did not affect destruction of the nuclei induced by SOD inhibitors in the cells from old leaves, but intensified it in the cells from young leaves. 2-Deoxyglucose, an inhibitor of glycolysis, and propyl gallate, SOD-mimic and antioxidant, suppressed destruction of the nuclei that was caused by SOD inhibitors and glucose in cells of the epidermis from the young, but not from the old leaves. Glucose and trien stimulated, and propyl gallate reduced generation of reactive oxygen species (ROS) in the pea epidermis as determined by the fluorescence of 2',7'-dichlorofluorescein (DCF). Carbonyl cyanide m-chlorophenylhydrazone (CCCP), a protonophoric uncoupler of oxidative and photosynthetic phosphorylation, suppressed the DCF fluorescence in the guard cells. Treatment of the cells with CCCP followed by its removal with washing increased destruction of the nuclei caused by SOD inhibitors and glucose. In young leaves, CCCP was less effective than in old ones. The findings demonstrate the effects of SOD inhibitors and glucose on the cell death and generation of ROS and could indicate glycolysis-dependent ROS production.The involvement of carbonic anhydrases (CA) and CA activity in the functioning of photosystem II (PSII) has been studied for a long time and has been shown in many works. However, so far only for CAH3 from Chlamydomonas reinhardtii there is evidence for its association with the donor side of PSII, where the CA activity of CAH3 can influence the functioning of the water-oxidizing complex (WOC). Our results suggest that CAH3 is also involved in the organization of the native structure of WOC independently of its CA activity. It was shown that in PSII preparations from wild type (WT) the high O2-evolving activity of WOC was observed up to 100 mM NaCl in the medium and practically did not decrease with increasing incubation time with NaCl. At the same time, the WOC function in PSII preparations from CAH3-deficient mutant cia3 is significantly inhibited already at NaCl concentrations above 35 mM, reaching 50% at 100 mM NaCl and increased incubation time. It is suggested that the absence of CAH3 in PSII from cia3 causes disruption of the native structure of WOC, allowing more pronounced conformational changes of its proteins and, consequently, suppression of the WOC active center function, when the ionic strength of the medium is increased.