Vedelcurran1000
Moreover, closer inspection revealed that all associations are likely due to cross-hybridization with sex chromosome regions during genotyping. We report loci with potential for mis-hybridization found on commonly used genotyping platforms that should be carefully considered in future genetic studies of sex-specific differences. MK-0159 supplier Despite being well powered to detect allele frequency differences of up to 0.8% between the sexes, we do not detect clear evidence for this signature of sexually antagonistic viability selection on autosomal variation. These findings suggest a lack of strong ongoing sexually antagonistic viability selection acting on single locus autosomal variation in humans.Pentatricopeptide repeat (PPR) proteins encoded by nuclear genomes can bind to organellar RNA and are involved in the regulation of RNA metabolism. However, the functions of many PPR proteins remain unknown in plants, especially in polyploidy crops. Here, through a map-based cloning strategy and Clustered regularly interspaced short palindromic repeats/cas9 (CRISPR/cas9) gene editing technology, we cloned and verified an allotetraploid cotton immature fiber (im) mutant gene (GhImA) encoding a PPR protein in chromosome A03, that is associated with the non-fluffy fiber phenotype. GhImA protein targeted mitochondrion and could bind to mitochondrial nad7 mRNA, which encodes the NAD7 subunit of Complex I. GhImA and its homolog GhImD had the same function and were dosage-dependent. GhImA in the im mutant was a null allele with a 22 bp deletion in the coding region. Null GhImA resulted in the insufficient GhIm dosage, affected mitochondrial nad7 pre-mRNA splicing, produced less mature nad7 transcripts, and eventually reduced Complex I activities, up-regulated alternative oxidase metabolism, caused reactive oxygen species (ROS) burst and activation of stress or hormone response processes. This study indicates that the GhIm protein participates in mitochondrial nad7 splicing, affects respiratory metabolism, and further regulates cotton fiber development via ATP supply and ROS balance.Glycolysis and fatty acid (FA) synthesis directs the production of energy-carrying molecules and building blocks necessary to support cell growth, although the absolute requirement of these metabolic pathways must be deeply investigated. Here, we used Drosophila genetics and focus on the TOR (Target of Rapamycin) signaling network that controls cell growth and homeostasis. In mammals, mTOR (mechanistic-TOR) is present in two distinct complexes, mTORC1 and mTORC2; the former directly responds to amino acids and energy levels, whereas the latter sustains insulin-like-peptide (Ilp) response. The TORC1 and Ilp signaling branches can be independently modulated in most Drosophila tissues. We show that TORC1 and Ilp-dependent overgrowth can operate independently in fat cells and that ubiquitous over-activation of TORC1 or Ilp signaling affects basal metabolism, supporting the use of Drosophila as a powerful model to study the link between growth and metabolism. We show that cell-autonomous restriction of glycolysis or FA synthesis in fat cells retrains overgrowth dependent on Ilp signaling but not TORC1 signaling. Additionally, the mutation of FASN (Fatty acid synthase) results in a drop in TORC1 but not Ilp signaling, whereas, at the cell-autonomous level, this mutation affects none of these signals in fat cells. These findings thus reveal differential metabolic sensitivity of TORC1- and Ilp-dependent growth and suggest that cell-autonomous metabolic defects might elicit local compensatory pathways. Conversely, enzyme knockdown in the whole organism results in animal death. Importantly, our study weakens the use of single inhibitors to fight mTOR-related diseases and strengthens the use of drug combination and selective tissue-targeting.During meiosis, the recombination-initiating DNA double-strand breaks (DSBs) are repaired by crossovers or noncrossovers (gene conversions). While crossovers are easily detectable, noncrossover identification is hampered by the small size of their converted tracts and the necessity of sequence polymorphism. We report identification and characterization of a mouse chromosome-wide set of noncrossovers by next-generation sequencing of 10 mouse intersubspecific chromosome substitution strains. Based on 94 identified noncrossovers, we determined the mean length of a conversion tract to be 32 bp. The spatial chromosome-wide distribution of noncrossovers and crossovers significantly differed, although both sets overlapped the known hotspots of PRDM9-directed histone methylation and DNA DSBs, thus supporting their origin in the standard DSB repair pathway. A significant deficit of noncrossovers descending from asymmetric DSBs proved their proposed adverse effect on meiotic recombination and pointed to sister chromatids as an alternative template for their repair. The finding has implications for the molecular mechanism of hybrid sterility in mice from crosses between closely related Mus musculus musculus and Mus musculus domesticus subspecies.The eyespot patterns found on the wings of nymphalid butterflies are novel traits that originated first in hindwings and subsequently in forewings, suggesting that eyespot development might be dependent on Hox genes. Hindwings differ from forewings in the expression of Ultrabithorax (Ubx), but the function of this Hox gene in eyespot development as well as that of another Hox gene Antennapedia (Antp), expressed specifically in eyespots centers on both wings, are still unclear. We used CRISPR-Cas9 to target both genes in Bicyclus anynana butterflies. We show that Antp is essential for eyespot development on the forewings and for the differentiation of white centers and larger eyespots on hindwings, whereas Ubx is essential not only for the development of at least some hindwing eyespots but also for repressing the size of other eyespots. Additionally, Antp is essential for the development of silver scales in male wings. In summary, Antp and Ubx, in addition to their conserved roles in modifying serially homologous segments along the anterior-posterior axis of insects, have acquired a novel role in promoting the development of a new set of serial homologs, the eyespot patterns, in both forewings (Antp) and hindwings (Antp and Ubx) of B. anynana butterflies. We propose that the peculiar pattern of eyespot origins on hindwings first, followed by forewings, could be due to an initial co-option of Ubx into eyespot development followed by a later, partially redundant, co-option of Antp into the same network.