Tychsenfallesen4084
The isoelectronic doping of dichalcogenolato nanoclusters of the type [Ag21E2P(OR)212]+ (E = S, Se) by any heteroatom belonging to groups 9-12 was systematically investigated using DFT calculations. Although they can differ in their global structure, all of these species have the same M@M12-centered icosahedral core. In any case, the different structure types are all very close in energy. In all of them, three different alloying sites can be identified (central, icosahedral, peripheral) and calculations allowed the trends in heteroatom site occupation preference across the group 9-12 family to be revealed. These trends are supported by complementary experimental results. They were rationalized on the basis of electronegativity, potential involvement in the bonding of valence d-orbitals and atom size. TD-DFT calculations showed that the effect of doping on optical properties is sizable and this should stimulate research on the modulation of luminescence properties in the dithiolato and diseleno families of complexes.Collision-induced dissociation (CID) of [Th,2C,2O]+ with Xe is performed using a guided ion beam tandem mass spectrometer (GIBMS). The only products observed are ThCO+ and Th+ by sequential loss of CO ligands. The experimental findings and theoretical calculations support that the structure of [Th,2C,2O]+ is the bent homoleptic thorium dicarbonyl cation, Th+(CO)2, having quartet spin, which is both thermodynamically and kinetically stable enough in the gas phase to be observed in our GIBMS instrument. Analysis of the kinetic energy-dependent cross sections for this CID reaction yields the first experimental determination of the bond dissociation energy (BDE) of (CO)Th+-CO at 0 K as 1.05 ± 0.09 eV. A theoretical BDE calculated at the CCSD(T) level with cc-pVXZ (X = T and Q) basis sets and a complete basis set (CBS) extrapolation is in very good agreement with the experimental result. Selleckchem Panobinostat Although the doublet spin bent thorium oxide ketenylidene cation, OTh+CCO, is calculated to be the most thermodynamically stable structure, it is not observed in our experiment where [Th,2C,2O]+ is formed by association of Th+ and CO in a direct current discharge flow tube (DC/FT) ion source. Potential energy profiles of both quartet and doublet spin are constructed to elucidate the isomerization mechanism of Th+(CO)2 to OTh+CCO. The failure to observe OTh+CCO is attributed to a barrier associated with C-C bond formation, which makes OTh+CCO kinetically inaccessible under our experimental conditions. Chemical bonding patterns in low-lying states of linear and bent Th+(CO)2 and OTh+CCO isomers are also investigated.In this Frontier article, recently discovered chromium(0) and manganese(I) complexes emitting from metal-to-ligand charge transfer (MLCT) excited states are highlighted. Chelating isocyanide ligands give access to this new class of 3d6 emitters with MLCT lifetimes in (or close to) the nanosecond regime in solution at room temperature. Although the so far achievable luminescence quantum yields in these open-shell complexes are yet comparatively low, the photophysical properties of the new chromium(0) and manganese(I) isocyanides are reminiscent of those of well-known ruthenium(II) polypyridines. Our findings provide insight into how undesired nonradiative MLCT deactivation in 3d6 complexes can be counteracted, and they seem therefore relevant for the further development of new luminescent first-row transition metal complexes based on iron(II) and cobalt(III) in addition to chromium(0) and manganese(I).Selenium nucleic acids possess unique properties and have been demonstrated to have a wide range of applications such as in DNA X-ray crystallography and novel medical therapies. However, as a heavy atom, selenium substitution may easily alter the photophysical properties of a nucleic acid by red-shifting the absorption spectra and introducing effective intersystem crossing to triplet excited states. In present work, the excited state dynamics of a naturally occurring selenium substituted uracil (2-selenuracil, 2SeU) is studied by using femtosecond transient absorption spectroscopy as well as quantum chemistry calculations. Ultrafast intersystem crossing to the lowest triplet state (T1) and effective non-radiative decay of this state to the ground state (S0) are demonstrated in the neutral form 2SeU. However, the triplet lifetime of the deprotonated form 2SeU is found to be almost one order of magnitude longer than that in the neutral one. Quantum chemistry calculations indicate that the short triplet lifetime in 2SeU is due to excited state population decay through a crossing point between T1 and S0. In the deprotonated form, shortening the N1-C2 bond length makes the structural distortion more difficult and brings a larger energy barrier on the pathway to the T1/S0 crossing point, resulting in one order of magnitude increase of the triplet state lifetime. Our study reveals one key factor to regulate the triplet lifetime of 2SeU and sets the stage to further investigate the photophysical and photochemical properties of 2SeU-containing DNA/RNA duplexes.The integration of semiconductor quantum dots and noble metal nanoparticles can efficiently couple numerous effects corresponding to the individual domains of the hybrid system for a variety of applications. Herein, we establish a direct correlation between the electronic band structure and optical band gap of monometallic and bimetallic alloy nanoparticle decorated CdSe quantum dots, which in turn regulate the charge shuttling dynamics in a quantum dot hybrid (QDH) system. Directly coupled Au, Pd, AuPd, and CdSe QDHs were prepared via a simple fabrication technique. The photoluminescence intensity of the QDHs was quenched compared to that of CdSe quantum dots with a maximumally diminished CdSe-AuPd system. Broadening of the absorbance peak along with a blue shift for QDHs confirm the interaction of the energy levels of the QDs and metal domains. AuPd decorated CdSe QDs demonstrate enhanced photocatalytic activity compared to their monometallic counterparts, which has made them interesting catalysts reported for the first time. Lifetime decay measurements, which isolated the individual charge-transfer steps, showed that a maximum amount of photoexcitons can be separated by bimetallic alloy decoration compared to monometallic ones. Cyclic voltammetry results offer insight into the change in the conduction band edge energy position for both monometallic and bimetallic incorporating semiconductor hybrid systems. Our findings reveal that photoexcited semiconductor quantum dots undergo charge equilibration when the QDs are in contact with metallic domains, influencing the shifting of the conduction band energy level of the hybrid to a more negative potential, and this is a maximum for the CdSe-AuPd hybrid, resulting in the best photocatalytic activity. Shuttling of electrons around the conduction band of CdSe and the Fermi level of the metallic domains is the main deciding factor for an efficient photocatalyst hybrid system.Synergistic doping of the metastable Gd3Al5O12Ce garnet with a Ca2+/Hf4+ pair and Sc3+ to form Gd2.97-xCaxHfxScyAl3O120.03Ce (x = 0.5-2.0, y = 0.0-1.5, x + y = 2.0) solid solution was conducted for the structural stabilization and photoluminescence manipulation. The site selection of Ca2+/Hf4+/Sc3+ dopants and the effects of doping on the crystal structure, local coordination, band structure and Ce3+ luminescence were revealed in detail with the results of XRD, Rietveld refinement, TEM, and UV-Vis/photoluminescence spectroscopy. A decrease in Ca2+/Hf4+ and an increase in the Sc3+ content were observed to shrink the lattice, widen the bandgap of the garnet host, red-shift the excitation/emission wavelength, broaden the emission band and shorten the fluorescence lifetime of Ce3+. The spectral changes were rationalized by considering the local coordination and crystal field splitting of the Ce3+ 5d energy level. Application of typical Gd0.97Ca2Hf2Al3O120.03Ce (x = 2.0, y = 0) cyan and Gd2.47Ca0.5Hf0.5Sc1.5Al3O120.03Ce (x = 0.5, y = 1.5) greenish-yellow phosphors in w-WLED lighting produced low correlated color temperatures of ∼3842 and 3514 K, high color rendering indices of ∼88 and 93 and favorable luminous efficacies of ∼32.9 and 14.7 lm/W under the excitation of 395 nm n-UV and 450 nm blue LED chips, respectively.Herein, we report the first rotational study of neutral L-DOPA, an extensively used supramolecular synthon and an amino acid precursor of the neurotransmitters dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline) using broadband and narrowband Fourier transform microwave spectroscopies coupled with a laser ablation vaporization system. The spectroscopic parameters derived from the analysis of the rotational spectrum conclusively identify the existence of four distinct conformers of L-DOPA in the supersonic jet, further rejecting the previously reported catechol ring-induced conformational restriction. The analysis of the 14N nuclear quadrupole coupling hyperfine structure further revealed the orientation of the N-bearing functional group, proving the existence of stabilizing N-H⋯π interactions for the observed structures.Ion interactions strongly determine the solvation environments of multivalent electrolytes even at concentrations below that required for practical battery-based energy storage. This statement is particularly true of electrolytes utilizing ethereal solvents due to their low dielectric constants. These solvents are among the most commonly used for multivalent batteries based on reactive metals (Mg, Ca) due to their reductive stability. Recent developments in multivalent electrolyte design have produced a variety of new salts for Mg2+ and Ca2+ that test the limits of weak coordination strength and oxidative stability. Such electrolytes have great potential for enabling full-cell cycling of batteries based on these working ions. However, the ion interactions in these electrolytes exhibit significant and non-intuitive concentration relationships. In this work, we investigate a promising exemplar, calcium tetrakis(hexafluoroisopropoxy)borate (Ca(BHFIP)2), in the ethereal solvents 1,2-dimethoxyethane (DME) and tetrahydrofuran (THF) across a concentration range of several orders of magnitude. Surprisingly, we find that effective salt dissociation is lower at relatively dilute concentrations (e.g. 0.01 M) than at higher concentrations (e.g. 0.2 M). Combined experimental and computational dielectric and X-ray spectroscopic analyses of the changes occurring in the Ca2+ solvation environment across these concentration regimes reveals a progressive transition from well-defined solvent-separated ion pairs to de-correlated free ions. This transition in ion correlation results in improvements in both conductivity and calcium cycling stability with increased salt concentration. Comparison with previous findings involving more strongly associating salts highlights the generality of this phenomenon, leading to important insight into controlling ion interactions in ether-based multivalent battery electrolytes.A series of solid-solution phosphate germanates Ca8+0.5xZnEu(PO4)7-x(GeO4)x (x = 0, 0.2, 0, 4, 0.6, 0.8, 1) with the β-Ca3(PO4)2-type structure were synthesized by solid-state reactions. The limit of existence of a single-phase solid solution was determined by X-ray diffraction patterns and it was found at x = 0.8. The heterovalent tetrahedral [PO4]3- → [GeO4]4- substitution requires a charge compensation according to the scheme [PO4]3- + ½ □ → [GeO4]4- + ½ Ca2+. The additional amount of Ca2+ ions in the crystal structure was detected at the M4 site during Rietveld refinement. It was shown that in β-Ca3(PO4)2-type compounds, charge balancing is not provided by the randomly distributed oxygen vacancies but only by the partial occupancy of the M4 site. The presence of Ca2+ at the M4 site leads to a polar structure with the space group R3c which was confirmed by an SHG test for all single-phase samples. It was shown that the Ge4+ ions preferably occupy the T3 site in the structure, which is connected through common oxygen with the cationic M1-M5 sites.