Turnerpihl3561
The indicated dose of 4-factor prothrombin complex concentrate (4F-PCC) for urgent vitamin K antagonist (VKA) reversal in patients with an international normalized ratio (INR) of 2 to 4 is 25 IU/kg, but there is no indicated dose for INR less then 2. We explored 4F-PCC dosing strategies for baseline INR less then 2. Clinical trial data were used to develop pharmacometric models for Factor X (FX) and FII, accounting for covariates including baseline INR. FX and FII levels over time were simulated for mean baseline INR levels of the clinical trial participants plus baseline INRs 3.1, 1.9, and 1.6. For each INR, 200 virtual male patients were simulated to evaluate 4F-PCC doses of 35, 25, 20, 15, 12.5, and 10 IU/kg. Given an elevated bleeding risk with VKA therapy in Japanese vs Western populations, results were stratified by Japanese and non-Japanese patients. Target levels of FX and FII were ≥50% activity at 30 minutes after dosing in ≥80% of patients. FX- and FII-time models were developed with 1088 FX observations from 193 patients and 1074 FII observations from 192 patients. Model-based simulations indicated that at baseline INR 3.1, ≥80% of patients achieved ≥50% FX and FII activity with 25 IU/kg and 20 IU/kg 4F-PCC, respectively; at baseline INR 1.9, corresponding doses were 20 IU/kg and 15 IU/kg 4F-PCC, and at baseline INR 1.6, corresponding doses were 15 IU/kg, and 10 IU/kg 4F-PCC. Selleckchem Liproxstatin-1 Trends in Japanese and non-Japanese patients were similar. In conclusion, low 4F-PCC doses (15-20 IU/kg) may be sufficient to achieve hemostatic levels of FX and FII in Japanese and non-Japanese patients with baseline INR less then 2.The phosphatidylinositide-3 kinases and the downstream mediator AKT drive survival and proliferation of multiple myeloma (MM) cells. AKT signaling is active in MM and has pleiotropic effects; however, the key molecular aspects of AKT dependency in MM are not fully clear. Among the various downstream AKT targets are the Forkhead box O (FOXO) transcription factors (TFs) and glycogen synthase kinase 3 (GSK3), which are negatively regulated by AKT signaling. Here we show that abrogation of AKT signaling in MM cells provokes cell death and cell cycle arrest, which crucially depends on both FOXO TFs and GSK3. Based on gene expression profiling, we defined a FOXO-repressed gene set that has prognostic significance in a large cohort of patients with MM, indicating that AKT-mediated gene activation is associated with inferior overall survival. We further show that AKT signaling stabilizes the antiapoptotic myeloid cell leukemia 1 (MCL1) protein by inhibiting FOXO- and GSK3-mediated MCL1 turnover. In concordance, abrogation of AKT signaling greatly sensitized MM cells for an MCL1-targeting BH3-mimetic, which is currently in clinical development. Taken together, our results indicate that AKT activity is required to restrain the tumor-suppressive functions of FOXO and GSK3, thereby stabilizing the antiapoptotic protein MCL1 in MM. These novel insights into the role of AKT in MM pathogenesis and MCL1 regulation provide opportunities to improve targeted therapy for patients with MM.We investigated here the novel immunomodulation and anti-multiple myeloma (MM) function of T cells engaged by the bispecific T-cell engager molecule AMG 701, and further examined the impact of AMG 701 in combination with immunomodulatory drugs (IMiDs; lenalidomide and pomalidomide). AMG 701 potently induced T-cell-dependent cellular cytotoxicity (TDCC) against MM cells expressing B-cell maturation antigen, including autologous cells from patients with relapsed and refractory MM (RRMM) (half maximal effective concentration, less then 46.6 pM). Besides inducing T-cell proliferation and cytolytic activity, AMG 701 also promoted differentiation of patient T cells to central memory, effector memory, and stem cell-like memory (scm) phenotypes, more so in CD8 vs CD4 T subsets, resulting in increased CD8/CD4 ratios in 7-day ex vivo cocultures. IMiDs and AMG 701 synergistically induced TDCC against MM cell lines and autologous RRMM patient cells, even in the presence of immunosuppressive bone marrow stromal cells or osteoclasts. IMiDs further upregulated AMG 701-induced patient T-cell differentiation toward memory phenotypes, associated with increased CD8/CD4 ratios, increased Tscm, and decreased interleukin 10-positive T and T regulatory cells (CD25highFOXP3high), which may downregulate T effector cells. Importantly, the combination of AMG 701 with lenalidomide induced sustained inhibition of MM cell growth in SCID mice reconstituted with human T cells; tumor regrowth was eventually observed in cohorts treated with either agent alone (P less then .001). These results strongly support AMG 701 clinical studies as monotherapy in patients with RRMM (NCT03287908) and the combination with IMiDs to improve patient outcomes in MM.
Frailty and cognitive impairment are associated with postoperative delirium, but are rarely assessed preoperatively. The study was designed to test the hypothesis that preoperative screening for frailty or cognitive impairment identifies patients at risk for postoperative delirium (primary outcome).
In this prospective cohort study, the authors administered frailty and cognitive screening instruments to 229 patients greater than or equal to 70 yr old presenting for elective spine surgery. Screening for frailty (five-item FRAIL scale [measuring fatigue, resistance, ambulation, illness, and weight loss]) and cognition (Mini-Cog, Animal Verbal Fluency) were performed at the time of the preoperative evaluation. Demographic data, perioperative variables, and postoperative outcomes were gathered. Delirium was the primary outcome detected by either the Confusion Assessment Method, assessed daily from postoperative day 1 to 3 or until discharge, if patient was discharged sooner, or comprehensive chart review. Seche development of postoperative delirium.
Screening mammography was assessed in nine randomized trials initiated between the years 1963-1990, with breast cancer-specific mortality as the primary endpoint. In contrast, breast cancer detection has been the primary endpoint in most screening trials initiated during the past decade. These trials have evaluated digital breast tomosynthesis (DBT), magnetic resonance imaging (MRI), and ultrasound, and novel screening strategies have been recommended solely on the basis of improvements in breast cancer detection rates. Yet, the assumption that increases in tumor detection produce reductions in cancer mortality has not been validated, and tumor-detection endpoints may exacerbate the problem of over-diagnosis. Indeed, the detection of greater numbers of early-stage breast cancers in the absence of a subsequent decline in rates of metastatic cancers and cancer-related mortality is the hallmark of over-diagnosis. There is now evidence to suggest that both ductal carcinoma in situ (DCIS) and invasive cancers are over-diagnosed as a consequence of screening.