Turanlauritsen6968
For optogenetic studies, zebrafish provide additional advantages, as the whole zebrafish heart can be visualized and interrogated in vivo in the transparent, externally developing embryo, and the relatively small adult heart allows for in situ cell-specific observation and control not possible in mammals. With the advent of increasingly sophisticated fluorescence imaging approaches and methods for spatially-resolved light stimulation in the heart, the zebrafish represents an experimental model with unrealized potential for cardiac optogenetic studies. In this review we summarize the use of zebrafish for optogenetic investigations in the heart, highlighting their specific advantages and limitations, and their potential for future cardiac research.Background Skin sympathetic nerve activity (SKNA) and QT interval variability are known to be associated with ventricular arrhythmias. However, the relationship between the two remains unclear. Objective The aim was to test the hypothesis that SKNA bursts are associated with greater short-term variability of the QT interval (STVQT) in patients with electrical storm (ES) or coronary heart disease without arrhythmias (CHD) than in healthy volunteers (HV). Methods We simultaneously recorded the ECG and SKNA during sinus rhythm in patients with ES (N = 10) and CHD (N = 8) and during cold-water pressor test in HV (N = 12). The QT and QTc intervals were manually marked and calculated within the ECG. The STVQT was calculated and compared to episodes of SKNA burst and non-bursting activity. Results The SKNA burst threshold for ES and HV was 1.06 ± 1.07 and 1.88 ± 1.09 μV, respectively (p = 0.011). During SKNA baseline and burst, the QT/QTc intervals and STVQT for ES and CHD were significantly higher than those of the HV. In all subjects, SKNA bursts were associated with an increased STVQT (from 6.43 ± 2.99 to 9.40 ± 5.12 ms, p = 0.002 for ES; from 9.48 ± 4.40 to 12.8 ± 5.26 ms, p = 0.016 for CHD; and from 3.81 ± 0.73 to 4.49 ± 1.24 ms, p = 0.016 for HV). The magnitude of increased STVQT in ES (3.33 ± 3.06 ms) and CHD (3.34 ± 2.34 ms) was both higher than that of the HV (0.68 ± 0.84 ms, p = 0.047 and p = 0.020). Conclusion Compared to non-bursting activity, SKNA bursts were associated with a larger increase in the QTc interval and STVQT in patients with heart disease than in HV.Renal ischemia-reperfusion (IR) is one of the main causes of renal injury. In severe cases with serious consequences, IR-related renal damage progresses rapidly and can even lead to acute renal failure. Its clinical treatment is currently difficult. According to various studies at home and abroad, HMGB1 is released from the nucleus into the cytoplasm or extracellular space by damaged parenchymal cells during ischemia and hypoxia, and this plays an important role in the initiation of reperfusion injury as an early inflammatory factor and is closely related to the occurrence and development of renal diseases. In recent years, the protective effect of osthole on IR of tissues and organs has been a key topic among clinical researchers. Osthole can inhibit the inflammatory response, reduce cell apoptosis the progression, and improve the prognosis of IR, thus protecting the kidney. During the development of renal IR, finding a mechanism through which the osthole blocks the release of HMGB1 from the nucleus would be helpful in detecting targets for clinical treatment.Personalized cardiac modeling is widely used for studying the mechanisms of cardiac arrythmias. Due to the high demanding of computational resource of modeling, the arrhythmias induced in the models are usually simulated for just a few seconds. In clinic, it is common that arrhythmias last for more than several minutes and the morphologies of reentries are not always stable, so it is not clear that whether the simulation of arrythmias for just a few seconds is long enough to match the arrhythmias detected in patients. This study aimed to observe how long simulation of the induced arrhythmias in the personalized cardiac models is sufficient to match the arrhythmias detected in patients. A total of 5 contrast enhanced MRI datasets of patient hearts with myocardial infarction were used in this study. Then, a classification method based on Gaussian mixture model was used to detect the infarct tissue. For each reentry, 3 s and 10 s were simulated. The characteristics of each reentry simulated for different duratiofficiency and shorten the simulation time to meet the time node requirements of clinical operation on patients.Fractures of complex body parts are often serious and difficult to handle, and they have high technical and training requirements. However, the realistic situation is that there are few opportunities for the junior residents, trainee doctors, and especially medical students to contact enough clinical practice and see such fracture patients. Fortunately, with the rapid development and continuous progress of 3D printing and related technologies, this situation has gradually gotten better and better. In this research, we confirmed that 3D printing technology could improve the effectiveness of fracture teaching and medical learning from multiple dimensions. We comprehensively screened and assessed 223 papers from the Web of Science (WoS) Core Collection on October 3, 2021, with "((3D) AND ((printing) OR (printed)) AND (fracture)) AND ((education) OR (training) OR (teaching))" as the retrieval strategy. Additionally, we used the VOSviewer software to analyze the keywords and countries and the organizations of the f 3D printing for training and educational propose, to promote the development of 3D technology-based medical education practice and further deepen the reform of medical education and improve the quality of fracture education and learning.Metabolic homeostasis requires the precise regulation of circulating sugar titers. In mammals, homeostatic control of circulating sugar titers requires the coordinated secretion and systemic activities of glucagon and insulin. Metabolic homeostasis is similarly regulated in Drosophila melanogaster through the glucagon-like adipokinetic hormone (AKH) and the Drosophila insulin-like peptides (DILPs). In flies and mammals, glucagon and AKH are biosynthesized in and secreted from specialized endocrine cells. KATP channels borne on these cells respond to fluctuations in circulating glucose titers and thereby regulate glucagon secretion. read more The influence of glucagon in the pathogenesis of type 2 diabetes mellitus is now recognized, and a crucial mechanism that regulates glucagon secretion was reported nearly a decade ago. Ongoing efforts to develop D. melanogaster models for metabolic syndrome must build upon this seminal work. These efforts make a critical review of AKH physiology timely. This review focuses on AKH biosynthesis and the regulation of glucose-responsive AKH secretion through changes in CC cell electrical activity. Future directions for AKH research in flies are discussed, including the development of models for hyperglucagonemia and epigenetic inheritance of acquired metabolic traits. Many avenues of AKH physiology remain to be explored and thus present great potential for improving the utility of D. melanogaster in metabolic research.[This retracts the article DOI 10.3389/fphar.2021.615445.].Background Agarwood, a type of herbal medicine widely used in Asian countries, is noted in traditional medicine for its intelligence-enhancing effects. Agarwood incense is traditionally administered by oral and nasal inhalation. To verify whether agarwood incense can exert its intelligence-enhancing effects in this way to rescue learning and memory impairment, typical clinical manifestations of dementia, we conducted a set of behavioral tests related to learning and memory. Methods C57BL/6 mice were divided into six groups. In addition to the control and model groups, we added a donepezil treatment group to evaluate the effect of three different agarwood administration doses. After a week of administration, scopolamine was injected 30 min before each behavioral test to create a learning and memory impairment model. A series of behavioral tests [the Morris water maze test (MWM), the novel object recognition test (NOR), and the step-down test (SDT)] were used to assess their learning ability, as well as their spatial and recognition memory. Results After scopolamine injection, the model group showed significant learning and memory impairment (i.e., longer latencies, lower crossing times, and lesser distance travelled in the target quadrant in MWM; a lower recognition index in NOR; and longer latencies and higher error times in SDT). The other four treatment groups all showed improvements in these indicators, and the overall therapeutic effect of agarwood was superior. Conclusion The inhalation administration of agarwood can significantly improve the learning and memory impairment caused by scopolamine in mice, and the therapeutic effect varied between doses.The coronavirus disease that emerged in 2019 (COVID-19) has affected health, societies and economies. Policies that have been imposed by different countries to slow the spread of the disease, including national lockdowns, curfews, border closures and enforcement of social distancing measures have disturbed the drug supply chain and resulted in drug shortages. Uncertainty concerning the pandemic has also led to the panic buying of drugs and the stockpiling of drugs in households, which has amplified the problem. In this cross-sectional study, a self-developed questionnaire was distributed online in order to a) assess the practice of household drug stockpiling prior to the national lockdown in Jordan, b) investigate the factors affecting it and c) measure peoples' knowledge about the consequences of this behaviour. Results from this study show that drug purchasing was reported by 44.3% of the participants and was most common among participants from non-medical backgrounds (336, 75.7%) or those who have chronic ersonnel, especially pharmacists, to avoid drug shortages during crises.Liver plays a pivotal role in maintaining blood glucose levels through complex processes which involve the disposal, storage, and endogenous production of this carbohydrate. Insulin is the hormone responsible for regulating hepatic glucose production and glucose storage as glycogen, thus abnormalities in its function lead to hyperglycemia in obese or diabetic patients because of higher production rates and lower capacity to store glucose. In this context, two different but complementary therapeutic approaches can be highlighted to avoid the hyperglycemia generated by the hepatic insulin resistance 1) enhancing insulin function by inhibiting the protein tyrosine phosphatase 1B, one of the main enzymes that disrupt the insulin signal, and 2) direct regulation of key enzymes involved in hepatic glucose production and glycogen synthesis/breakdown. It is recognized that medicinal plants are a valuable source of molecules with special properties and a wide range of scaffolds that can improve hepatic glucose metabolism. Some molecules, especially phenolic compounds and terpenoids, exhibit a powerful inhibitory capacity on protein tyrosine phosphatase 1B and decrease the expression or activity of the key enzymes involved in the gluconeogenic pathway, such as phosphoenolpyruvate carboxykinase or glucose 6-phosphatase. This review shed light on the progress made in the past 7 years in medicinal plants capable of improving hepatic glucose homeostasis through the two proposed approaches. We suggest that Coreopsis tinctoria, Lithocarpus polystachyus, and Panax ginseng can be good candidates for developing herbal medicines or phytomedicines that target inhibition of hepatic glucose output as they can modulate the activity of PTP-1B, the expression of gluconeogenic enzymes, and the glycogen content.