Turanbaker2540

Z Iurium Wiki

Two-dimensional MXene Ti3C2T x nanosheets with peroxide decoration (p-Ti3C2T x ) are synthesized by a sonication-assisted MILD etching method. The obtained MXenes can generate hydroxyl radical species and act as an initiator for free-radical polymerization of a series of acrylic monomers without the use of light illumination or co-initiators. The monomers analyzed include acrylamide, N-isopropylacrylamide (NIPAM), N,N-dimethylacrylamide, methyl methacrylate, and hydroxyethyl methacrylate. GSK 3 inhibitor By simply mixing N-isopropylacrylamide monomers and p-Ti3C2T x nanosheets under deoxygenated conditions, PNIPAM-based nanocomposite hydrogels are synthesized using a high concentration of the monomer. The nanocomposite hydrogels have a photothermal conversion efficiency of 34.7% and photothermal stability superior to that of pristine Ti3C2T x . Taking advantage of the thermal responsive behavior of PNIPAM, the nanocomposite hydrogels are successfully exploited as remotely near-infrared light controlled "smart" windows, fluidic valves and photodetectors. This journal is © The Royal Society of Chemistry 2019.The reaction of the magnesium(i) complexes [(Arnacnac)Mg2], (Arnacnac = HC(MeCNAr)2, Ar = Dip (2,6-iPr2C6H3), Dep (2,6-Et2C6H3), Mes (2,4,6-Me3C6H2), Xyl (2,6-Me2C6H3)) with fullerene C60 afforded a series of hydrocarbon-soluble fulleride complexes [(Arnacnac)Mg n C60], predominantly with n = 6, 4 and 2. 13C1H NMR spectroscopic studies show both similarities (n = 6) and differences (n = 4, 2) to previously characterised examples of fulleride complexes and materials with electropositive metal ions. The molecular structures of [(Arnacnac)Mg n C60] with n = 6, 4 and 2 can be described as inverse coordination complexes of n [(Arnacnac)Mg]+ ions with C60 n- anions showing predominantly ionic metal-ligand interactions, and include the first well-defined and soluble complexes of the C60 6- ion. Experimental studies show the flexible ionic nature of the (Arnacnac)Mg+···C60 6- coordination bonds. DFT calculations on the model complex [(Menacnac)Mg6C60] (Menacnac = HC(MeCNMe)2) support the formulation as an ionic complex with a central C60 6- anion and comparable frontier orbitals to C60 6- with a small HOMO-LUMO gap. The reduction of C60 to its hexaanion gives an indication about the reducing strength of dimagnesium(i) complexes. This journal is © The Royal Society of Chemistry 2019.Ions at battery interfaces participate in both the solid-electrolyte interphase (SEI) formation and the subsequent energy storage mechanism. However, few in situ methods can directly track interfacial Li+ dynamics. Herein, we report on scanning electrochemical microscopy with Li+ sensitive probes for its in situ, localized tracking during SEI formation and intercalation. We followed the potential-dependent reactivity of edge plane graphite influenced by the interfacial consumption of Li+ by competing processes. Cycling in the SEI formation region revealed reversible ionic processes ascribed to surface redox, as well as irreversible SEI formation. Cycling at more negative potentials activated reversible (de)intercalation. Modeling the ion-sensitive probe response yielded Li+ intercalation rate constants between 10-4 to 10-5 cm s-1. Our studies allow decoupling of charge-transfer steps at complex battery interfaces and create opportunities for interrogating reactivity at individual sites. This journal is © The Royal Society of Chemistry 2019.As one of the most critical molecular parameters, molecular weight distribution has a profound impact on the structure and properties of polymers. Quantitative and comprehensive understanding, however, has yet to be established, mainly due to the challenge in the precise control and regulation of molecular weight distribution. In this work, we demonstrated a robust and effective approach to artificially engineer the molecular weight distribution through precise recombination of discrete macromolecules. The width, symmetry, and other characteristics of the distribution can be independently manipulated to achieve absolute control, serving as a model platform for highlighting the importance of chain length heterogeneity in structural engineering. Different from their discrete counterparts, each individual component in dispersed samples experiences a varied degree of supercooling at a specific crystallization temperature. Non-uniform crystal nucleation and growth kinetics lead to distinct molecular arrangements. This work could bridge the gap between discrete and dispersed macromolecules, providing fundamental perspectives on the critical role of molecular weight distribution. This journal is © The Royal Society of Chemistry 2019.Herein we report our recent progress toward the enantioselective total synthesis of the diterpenoid natural products curcusones A-D by means of complementary Stetter annulation or ring-closing metathesis (RCM) disconnections. Using the latter approach, we have achieved the concise construction of the 5-7-6 carbocyclic core embedded in each member of the curcusone family. Essential to this route is the use of a cross-electrophile coupling strategy, which has not previously been harnessed in the context of natural product synthesis. This journal is © The Royal Society of Chemistry 2019.Ten-eleven translocation (TET) enzymes oxidize C-H bonds in 5-methylcytosine (5mC) to hydroxyl (5hmC), formyl (5fC) and carboxyl (5caC) intermediates en route to DNA demethylation. It has remained a challenge to study the function of a single oxidized product. We investigate whether alkyl groups other than methyl could be oxidized by TET proteins to generate a specific intermediate. We report here that TET2 oxidizes 5-ethylcytosine (5eC) only to 5-hydroxyethylcytosine (5heC). In biochemical assays, 5heC acts as a docking site for proteins implicated in transcription, imbuing this modification with potential gene regulatory activity. We observe that 5heC is resistant to downstream wild type hydrolases, but not to the engineered enzymes, thus establishing a unique tool to conditionally alter the stability of 5heC on DNA. Furthermore, we devised a chemical approach for orthogonal labeling of 5heC. Our work offers a platform for synthesis of novel 5-alkylcytosines, provides an approach to 'tame' TET activity, and identifies 5heC as an unnatural modification with a potential to control chromatin-dependent processes.

Autoři článku: Turanbaker2540 (Dickinson Monaghan)